In this paper we study existence and uniqueness of solutions for the Hammerstein equation in the space of function of bounded total -variation in the sense of Hardy-Vitali-Tonelli, where , and are suitable functions. The existence and uniqueness of solutions are proved by means of the Leray-Schauder nonlinear alternative and the Banach contraction mapping principle.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1185, author = {Wadie Aziz and Jos\'e A. Guerrero and L. Antonio Az\'ocar and Nelson Merentes}, title = {<title-group xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><article-title/></title-group>}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {36}, year = {2016}, pages = {207-229}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1185} }
Wadie Aziz; José A. Guerrero; L. Antonio Azócar; Nelson Merentes.. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 36 (2016) pp. 207-229. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1185/
[000] [1] A. Alexiewicz, Functional Analysis (PWN 49, Warsaw, 1969).
[001] [2] J. Appell and C.-J. Chen, How to solve Hammerstein equations, J. Int. Equ. Appl 18 (2006), 287-296. doi: 10.1216/jiea/1181075392
[002] [3] R.P. Agarwal, D. O'Regan and P.J. Wong, Positive solutions of differential, difference and integral equations (Kluwer Academic Publishers , Dordrecht, 1999). doi: 10.1007/978-94-015-9171-3
[003] [4] W. Aziz, H. Leiva and N. Merentes, Solutions of Hammerstein equations in the space , Quaestiones Mathematicae 37 (2014), 1-12. doi: 10.2989/16073606.2014.894675
[004] [5] L.A. Azocar, H. Leiva, J. Matute and N. Merentes, On the Hammerstein equation in the space of functions of bounded -variation in the plane, Archivum Mathematicum (Brno) 49 (2013), 51-64. doi: 10.5817/AM2013-1-51
[005] [6] J. Banaś, Integrable solutions of Hammerstein and Urysohn integral equations, J. Austral. Math. Soc. 46 (1989), 61-68. doi: 10.1017/S1446788700030378
[006] [7] J. Banaś and Z. Knap, Integrable solutions of a functional-integral equation, Revista Matemática de la Universidad Complutense de Madrid
2 (1989), 31-38.
[007] [8] D. Bugajewska, D. Bugajewski and H. Hudzik, On -solutions of some nonlinear integral equations, J. Math. Anal. Appl.
287 (2003), 265-278. doi: 10.1016/S0022-247X(03)00550-X
[008] [9] D. Bugajewska, D. Bugajewski and G. Lewicki, On nonlinear integral equations in the space of functions of bounded generalized -variation, J. Int. Equ. Appl.
21 (2009), 1-20. doi: 10.1216/JIE-2009-21-1-1
[009] [10] D. Bugajewska and D. O’Regan, On nonlinear integral equations and -bounded variation, Acta Math. Hungar.
107 (2005), 295-306. doi: 10.1007/s10474-005-0197-8
[010] [11] T.A. Burton, Volterra Integral and Differential Equations (Academic Press, New York, 1983).
[011] [12] V.V. Chistyakov, Selections of bounded variation, J. Appl. Anal. 10 (2004), 1-82. doi: 10.1515/JAA.2004.1
[012] [13] C. Corduneanu, Integral Equations and Applications (Cambridge University Press, New York, 1973).
[013] [14] J. Diestel, Sequences and Series in Banach Spaces ({Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984). doi: 10.1007/978-1-4612-5200-9
[014] [15] G. Emmanuele, About the existence of integrable solutions of a functional-integral equation, Revista de Matemática de la Universidad Complutense de Madrid 4 (1991), 65-69. doi: 10.5209/rev_rema.1991.v4.n1.18000
[015] [16] G. Emmanuele, Integrable solutions of a functional-integral equation, J. Int. Equ. Appl. 4 (1992), 89-94. doi: 10.1216/jiea/1181075668
[016] [17] J.A. Guerrero, Extensión a de la Noción de Función de Variación Acotada en el Sentido Hardy-Vitali-Wiener, Ph.D. Thesis,Universidad Central de Venezuela, Facultad de Ciencias, Postgrado de Matematica, Caracas - Venezuela, 2010, in Spanish.
[017] [18] G.H. Hardy, On double {Fourier} series, and especially those which represent the double zeta-function with real and incommesurable parameters, Q.J. Math. Oxford 37 (1905), 53-79.
[018] [19] C. Jordan, Sur la série de Fourier, C.R. Acad. Sci. 92 (1881), 228-230.
[019] [20] H. Leiva, J. Matute and N. Merentes, On the Hammerstein-Volterra equation in the space of the absolutely continuous functions, I.J. Math. Anal. 6 (2012), 2977-2999.
[020] [21] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. (1034) (Springer-Verlag, 1983).
[021] [22] B.G. Pachpatte, Applications of the Leray-Schauder alternative to some Volterra integral and integro-diferential equations, Indian J. Pure Appl. Math. 26 (1995), 1161-1168.
[022] [23] B.G. Pachpatte, Multidimensional Integral Equations and Inequalities, Atlantis Studies in Mathematics for Engineering and Science (Atlantis Press, 2011).
[023] [24] D. O'Regan, Fixed point theorems for nonlinear operators, JMAA 212 (1996), 413-432. doi: 10.1006/jmaa.1996.0324
[024] [25] D. O'Regan, Existence theory for nonlinear Volterra integro-differential and integral equations, Nonlinear Anal. 31 (1998), 317-341. doi: 10.1016/S0362-546X(96)00313-6
[025] [26] R. Precup, Theorems of Leray-Schauder Type and Application (Gordon and Breach Science Publishers, 2001).
[026] [27] Š. Schwabik, M. Tvrdý and O. Vejvoda, Differential and integral equations, Boundary value problems and adjoints, Academia Praha and Reidel D. (1979), 239-246.
[027] [28] L. Tonelli, Sulle funzioni di due variabili generalmente a variazione limitata, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (1936), 315-320.
[028] [29] G. Vitali, Sulle funzione integrali, Atti Accad. Sci. Torino CI Sci Fis Mat Natur 40 (1904/1905) 1021-1034 and (1984) Opere sull'analisi teale Cremonese 205-220.
[029] [30] L.C. Young, Sur une généralisation de la notion de variation de puissance pieme borneé au sens de N. Wiener et sur la convergence des séries de Fourier, C.R. Acad. Sci. Paris Sér. A 204 (1937), 470-472.
[030] [31] P.P. Zabrejko, A.I. Koshelev, M.A. Krasnosel'skii, S.G. Mikhlin, L.S. Rakovschik and V.J. Stetsenko, Integral Equations (Noordhoff, Leyden, 1975).