Weakly precompact operators on Cb(X,E) with the strict topology
Juliusz Stochmal
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 36 (2016), p. 65-77 / Harvested from The Polish Digital Mathematics Library

Let X be a completely regular Hausdorff space, E and F be Banach spaces. Let Cb(X,E) be the space of all E-valued bounded continuous functions on X, equipped with the strict topology β. We study weakly precompact operators T:Cb(X,E)F. In particular, we show that if X is a paracompact k-space and E contains no isomorphic copy of l¹, then every strongly bounded operator T:Cb(X,E)F is weakly precompact.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286883
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1182,
     author = {Juliusz Stochmal},
     title = {Weakly precompact operators on $C\_{b}(X,E)$ with the strict topology},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {36},
     year = {2016},
     pages = {65-77},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1182}
}
Juliusz Stochmal. Weakly precompact operators on $C_{b}(X,E)$ with the strict topology. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 36 (2016) pp. 65-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1182/

[000] [1] C. Abbott, Weakly precompact and GSP operators on continuous function spaces, Bull. Polish Acad. Sci. Math. 37 (1989), 467-476. | Zbl 0767.47011

[001] [2] C. Abbott, A. Bator, R. Bilyeu and P. Lewis, Weak precompactness, strong boundedness, and weak complete continuity, Math. Proc. Camb. Phil. Soc. 108 (1990), 325-335. doi: 10.1017/S030500410006919X | Zbl 0737.46008

[002] [3] E. Bator and P. Lewis, Operators having weakly precompact adjoints, Math. Nachr. 157 (1992), 99-103. doi: 10.1002/mana.19921570109 | Zbl 0792.47021

[003] [4] J. Bourgain, An averaging result for l₁-sequences and application to weakly conditionallycompact sets in L₁^X, Israel J. Math. 32 (1979), 289-298. doi: 10.1007/BF02760458

[004] [5] A. Bouziad, Luzin measurability of Carath´eodory type mappings, Topology Appl. 154 (2007), 287-301. doi: 10.1016/j.topol.2006.04.013 | Zbl 1120.54010

[005] [6] J.B. Cooper, The strict topology and spaces with mixed topology, Proc. Amer. Math. Soc. 30 (1971), 583-592. doi: 10.1090/S0002-9939-1971-0284789-2 | Zbl 0225.46004

[006] [7] J. Diestel, Sequences and Series in Banach Spaces (Graduate Texts in Math., vol. 92, Springer-Verlag, 1984).

[007] [8] J. Diestel and J.J. Uhl, Vector Measures (Amer. Math. Soc. Surveys 15, 1977).

[008] [9] N. Dinculeanu, Vector Measures (Pergamon Press, New York, 1967). doi: 10.1016/b978-1-4831-9762-3.50004-4

[009] [10] N. Dinculeanu, Vector Integration and Stochastic Integration in Banach Spaces (John Wiley and Sons Inc., 2000). doi: 10.1002/9781118033012 | Zbl 0974.28006

[010] [11] R. Engelking, General Topology (Heldermann Verlag, Berlin, 1989).

[011] [12] I. Ghenciu, Weak precompactness in the space of vector-valued measures of bounded variation, J. Function Spaces 2015 (2015), ID 213679. | Zbl 1319.46023

[012] [13] I. Ghenciu and P. Lewis, Strongly bounded representing measures and converging theorems, Glasgow Math. J. 52 (2010), 435-445. doi: 10.1017/S0017089510000133 | Zbl 1208.46044

[013] [14] L.V. Kantorovitch and G.P. Akilov, Functional Analysis (Pergamon Press, OxfordElmsford, New York, 1982).

[014] [15] L.A. Khan, The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc. 22 (1979), 35-41. doi: 10.1017/S0013091500027784 | Zbl 0429.46023

[015] [16] L.A. Khan and K. Rowlands, On the representation of strictly continuous linear functionals, Proc. Edinburgh Math. Soc. 24 (1981), 123-130. doi: 10.1017/S0013091500006428 | Zbl 0459.46026

[016] [17] M. Nowak, Operator measures and integration operators, Indag. Math. 24 (2013), 279-290. doi: 10.1016/j.indag.2012.10.002

[017] [18] M. Nowak, A Riesz representation theory for completely regular Hausdorff spaces and its applications, Open Math (in press). | Zbl 06632375

[018] [19] M. Nowak, Completely continuous operators and the strict topology, (submitted).

[019] [20] E. Saab and P. Saab, On unconditionally converging and weakly precompact operators, Illinois J. Math. 35 (1991), 522-531. | Zbl 0729.46014

[020] [21] H.J. Song, Characterizations of weakly precompactness of operators acting between Banach spaces, Kangweon-Kyungki Math. Jour. 12 (2004), 127-146.

[021] [22] J. Schmets and J. Zafarani, Strict topologies and (gDF)-spaces, Arch. Math. 49 (1987), 227-231. doi: 10.1007/BF01271662 | Zbl 0615.46032

[022] [23] M. Talagrand, Weak Cauchy sequences in L₁(E), Amer. J. Math. 106 (1984), 703-724. doi: 10.2307/2374292 | Zbl 0579.46025

[023] [24] A. Wiweger, Linear spaces with mixed topology, Studia Math. 20 (1961), 47-68. | Zbl 0097.31301