Let X be a completely regular Hausdorff space, E and F be Banach spaces. Let be the space of all E-valued bounded continuous functions on X, equipped with the strict topology β. We study topological properties of the space of all -continuous linear operators from to F, equipped with the topology of simple convergence. If X is a locally compact paracompact space (resp. a P-space), we characterize -compact subsets of in terms of properties of the corresponding sets of the representing operator-valued Borel measures. It is shown that the space is sequentially complete if X is a locally compact paracompact space.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1181, author = {Marian Nowak}, title = {Topological properties of some spaces of continuous operators}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {36}, year = {2016}, pages = {79-86}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1181} }
Marian Nowak. Topological properties of some spaces of continuous operators. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 36 (2016) pp. 79-86. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1181/
[000] [1] N. Bourbaki, Elements of Mathematics, Topological Vector Spaces, Chap. 1-5 (Springer, Berlin, 1987). doi: 10.1007/978-3-642-61715-7 | Zbl 0622.46001
[001] [2] R.C. Buck, Bounded contiuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104. doi: 10.1307/mmj/1028998054 | Zbl 0087.31502
[002] [3] S. Choo, Strict topology on spaces of continuous vector-valued functions, Can. J. Math. 31 (4) (1979), 890-896. doi: 10.4153/CJM-1979-084-9 | Zbl 0393.46031
[003] [4] J.B. Cooper, The strict topology and spaces with mixed topologies, Proc. Amer. Math. Soc. 30 (3) (1971), 583-592. doi: 10.1090/S0002-9939-1971-0284789-2 | Zbl 0225.46004
[004] [5] N. Dinculeanu, Vector Measures (Pergamon Press, New York, 1967). doi: 10.1016/b978-1-4831-9762-3.50004-4
[005] [6] D. Fontenot, Strict topologies for vector-valued functions, Canad. J. Math. 26 (4) (1974), 841-853. doi: 10.4153/CJM-1974-079-1 | Zbl 0259.46037
[006] [7] R.K. Goodrich, A Riesz representation theorem, Proc. Amer. Math. Soc. 24 (1970), 629-636. doi: 10.1090/S0002-9939-1970-0415386-2 | Zbl 0193.42002
[007] [8] L. Gillman and M. Henriksen, Concerning rings of continuous functions, Trans. Amer. Math. Soc. 77 (1954), 340-362. doi: 10.1090/S0002-9947-1954-0063646-5 | Zbl 0058.10003
[008] [9] L.A. Khan, The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc. 22 (1) (1979), 35-41. doi: 10.1017/S0013091500027784 | Zbl 0429.46023
[009] [10] L.A. Khan and K. Rowlands, On the representation of strictly continuous linear functionals, Proc. Edinburgh Math. Soc. 24 (1981), 123-130. doi: 10.1017/S0013091500006428 | Zbl 0459.46026
[010] [11] S.S. Khurana, Topologies on spaces of vector-valued continuous functions, Trans. Amer. Math. Soc. 241 (1978), 195-211. doi: 10.1090/S0002-9947-1978-0492297-X | Zbl 0335.46017
[011] [12] S.S. Khurana and S.A. Choo, Strict topology and P-spaces, Proc. Amer. Math. Soc. 61 (1976), 280-284. doi: 10.2307/2041326 | Zbl 0322.46052
[012] [13] S.S. Khurana and S.I. Othman, Completeness and sequential completeness in certain spaces of measures, Math. Slovaca 45 (2) (1995), 163-170. | Zbl 0832.46016
[013] [14] M. Nowak, A Riesz representation theory for completely regular Hausdorff spaces and its applications, Open Math., (in press).
[014] [15] W. Ruess, [Weakly] compact operators and DF-spaces, Pacific J. Math. 98 (1982), 419-441. doi: 10.2140/pjm.1982.98.419
[015] [16] H. Schaeffer and X.-D. Zhang, On the Vitali-Hahn-Saks theorem, Operator Theory, Adv. Appl. 75 (Birkhäuser, Basel, 1995), 289-297.
[016] [17] J. Schmets and J. Zafarani, Strict topologies and (gDF)-spaces, Arch. Math. 49 (1987), 227-231. doi: 10.1007/BF01271662 | Zbl 0615.46032
[017] [18] R. Wheeler, The strict topology for P-spaces, Proc. Amer. Math. Soc. 41 (2) (1973), 466-472. doi: 10.2307/2039115 | Zbl 0272.46018
[018] [19] A. Wiweger, Linear spaces with mixed topology, Studia Math. 20 (1961), 47-68. | Zbl 0097.31301