In this paper we define new classes of sequences GM(β,r) and DGM(α,β,γ,r). Using these classes we generalize and extend the P. Kórus results concerning the uniform convergence of sine, cosine and double sine-cosine series, respectively.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1177, author = {Krzysztof Duzinkiewicz}, title = {On the uniform convergence of sine, cosine and double sine-cosine series}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {36}, year = {2016}, pages = {87-116}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1177} }
Krzysztof Duzinkiewicz. On the uniform convergence of sine, cosine and double sine-cosine series. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 36 (2016) pp. 87-116. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1177/
[000] [1] T.W. Chaundy and A.E. Jolliffe, The uniform convergence of certain class of trigonometrical series, Proc. London Math. Soc. 15 (1916), 214-216.
[001] [2] K. Duzinkiewicz and B. Szal, On the uniform convergence of double sine series, http://arxiv.org/pdf/1510.06273v1.pdf.
[002] [3] P. Kórus, Remarks on the uniform and L1-convergence of trigonometric series, Acta Math. Hungar. 128 (2010), 369-380. doi: 10.1007/s10474-010-9217-4 | Zbl 1240.42015
[003] [4] P. Kórus, On the uniform convergence of double sine series with generalized monotone coefficients, Periodica Math. Hungar. 63 (2011), 205-214. doi: 10.1007/s10998-011-8205-y | Zbl 1265.42007
[004] [5] P. Kórus, Uniform convergence of double trigonometric series, Mathematica Bohemica 138 (3) (2013), 225-243. | Zbl 1289.42018
[005] [6] B. Szal, A new class of numerical sequences and its applications to uniform convergence of sine series, Math. Nachr. 284 (14-15) (2011), 1985-2002.
[006] [7] B. Szal, On L-convergence of trigonometric series, J. Math. Anal. Appl. 373 (2011), 449-463. doi: 10.1016/j.jmaa.2010.08.003 | Zbl 1204.42010
[007] [8] D.S. Yu and S.P. Zhou, A generalization of monotonicity condition and applications, Acta Math. Hungar. 115 (2007), 247-267. doi: 10.1007/s10474-007-5253-0 | Zbl 1136.42002
[008] [9] S.P. Zhou, P. Zhou and D.S. Yu, Ultimate generalization to monotonicity for uniform convergence of trigonometric series, Sci. China Math. 53 (7) (2010), 1853-1862. doi: 10.1007/s11425-010-3138-0 | Zbl 1211.42006
[009] [10] I.E. Žak and A.A. Šneider, Conditions for uniform convergence of double sine series, Izv. Vysš. Učebn. Zaved. Matematika 4 (1966) in Russian, 44-52.