Some averaging results for ordinary differential inclusions
Amel Bourada ; Rahma Guen ; Mustapha Lakrib ; Karim Yadi
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 35 (2015), p. 47-63 / Harvested from The Polish Digital Mathematics Library

We consider ordinary differential inclusions and we state and discuss some averaging results for these inclusions. Our results are proved under weaker conditions than the results in the literature.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276646
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1169,
     author = {Amel Bourada and Rahma Guen and Mustapha Lakrib and Karim Yadi},
     title = {Some averaging results for ordinary differential inclusions},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {35},
     year = {2015},
     pages = {47-63},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1169}
}
Amel Bourada; Rahma Guen; Mustapha Lakrib; Karim Yadi. Some averaging results for ordinary differential inclusions. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 35 (2015) pp. 47-63. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1169/

[000] [1] J.P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory (Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1984). doi: 10.1007/978-3-642-69512-4 | Zbl 0538.34007

[001] [2] K. Deimling, Multivalued Differential Equations (Walter de Gruyter, Berlin, 1992). doi: 10.1515/9783110874228 | Zbl 0760.34002

[002] [3] G. Grammel, Averaging of multivalued differential equations, Int. J. Math. Math. Sci. 25 (2003), 1615-1622. doi: 10.1155/S016117120300680X | Zbl 1036.34013

[003] [4] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer Academic Publishers (Dordrecht-Boston-London, 1997). | Zbl 0887.47001

[004] [5] T. Janiak and E. Łuczak-Kumorek, Method of averaging for the system of functional-differential inclusions, Discuss. Math. 16 (1996), 137-151. | Zbl 0910.34058

[005] [6] T. Janiak and E. Łuczak-Kumorek, Averaging of neutral inclusions when the average value of the right-hand side does not exist, Acta Math. Viet. 25 (2000), 1-11. | Zbl 0954.34039

[006] [7] S. Klymchuk, A. Plotnikov and N. Skripnik, Overview of V.A. Plotnikov's research on averaging of differential inclusions, Physica D: Nonlinear Phenomena 241 (2012), 1932-1947. doi: 10.1016/j.physd.2011.05.004

[007] [8] N.A. Perestyuk, V.A. Plotnikov, A.M. Samoilenko and N.V. Skripnik, Differential equations with impulse effects: multivalued right-hand sides with discontinuities, (De Gruyter Studies in Mathematics: 40). Berlin/Boston: Walter De Gruyter GmbH&Co., 2011. | Zbl 1234.34002

[008] [9] N.V. Plotnikova, The Krasnosel'skii-Krein theorem for differential inclusions, Differ. Eq. 41 (2005), 1049-1053. doi: 10.1007/s10625-005-0248-5 | Zbl 1109.34306

[009] [10] G.V. Smirnov, Introduction to the Theory of Differential Inclusions, Graduate Studies in Math. 41, AMS, Providence, 2002.