This work concerns the study of the controllability of some partial functional integrodifferential equation with nonlocal initial conditions in Banach spaces. It gives sufficient conditions that ensure the controllability of the system by supposing that its linear homogeneous part admits a resolvent operator in the sense of Grimmer, and by making use of the measure of noncompactness and the Mönch fixed-point theorem. As a result, we obtain a generalization of the work of Y.K. Chang, J.J. Nieto and W.S. Li (J. Optim. Theory Appl. 142, 267-273 (2009)), without assuming the compactness of the resolvent operator. An example of application is given for illustration.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1167, author = {Khalil Ezzinbi and Guy Degla and Patrice Ndambomve}, title = {Controllability for some partial functional integrodifferential equations with nonlocal conditions in Banach spaces}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {35}, year = {2015}, pages = {25-46}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1167} }
Khalil Ezzinbi; Guy Degla; Patrice Ndambomve. Controllability for some partial functional integrodifferential equations with nonlocal conditions in Banach spaces. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 35 (2015) pp. 25-46. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1167/
[000] [1] A.A. Agrachev, (ed.), Mathematical Control Theory. Summer School on Mathematical Control Theory, First Edition, The Abdus Salam ICTP Publications and Printing Section (2002).
[001] [2] R. Atmania and S. Mazouzi, Controllability of semilinear integrodifferential equations with nonlocal conditions, Electr. J. Diff. Equ. 2005 (75) (2005), 1-9. | Zbl 1075.34081
[002] [3] K. Balachandran and J.Y. Park, Existence of solutions and controllability of nonlinear integrodifferential systems in Banach spaces, Mathematical Problems in Engineering 2 (2003), 65-79. doi: 10.1155/S1024123X03201022 | Zbl 1074.34057
[003] [4] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, vol. 60 (Marcel Dekker, New York, 1980). | Zbl 0441.47056
[004] [5] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494-505. doi: 10.1016/0022-247X(91)90164-U | Zbl 0748.34040
[005] [6] B. Cahlon, D.M. Kulkarni and P. Shi, Stepwise stability for the heat equation with a nonlocal constraint, Siam J. Numes. Anal. 32 (2) (1995), 571-593. doi: 10.1137/0732025 | Zbl 0831.65094
[006] [7] Y.K. Chang, J.J. Nieto and W.S. Li, Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces, J. Optim. Theory Appl. 142 (2009), 267-273. doi: 10.1007/s10957-009-9535-2 | Zbl 1178.93029
[007] [8] M.C. Delfour and J.P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, SIAM series on Advances in Design and Control, Society for Industrial and Applied Mathematics (Philadelphia, Second Edition, 2011). doi: 10.1137/1.9780898719826 | Zbl 1251.49001
[008] [9] W. Desch, R. Grimmer and W. Schappacher, Some considerations for linear integrodifferential equations, J. Math. Anal. and Appl. 104 (1984), 219-234. doi: 10.1016/0022-247X(84)90044-1 | Zbl 0595.45027
[009] [10] W. Desch, R. Grimmer and W. Schappacher, Well-posedness and wave propagation for a class of integrodifferential equations in Banach space, J. Differ. Equ. 74 (2) (1988), 391-411. doi: 10.1016/0022-0396(88)90011-3 | Zbl 0663.45008
[010] [11] K. Ezzinbi, H. Toure and I. Zabsonre, Existence and regularity of solutions for some partial functional integrodifferential equations in Banach spaces, Nonlin. Anal. TMA 70 (2009), 2761-2771. doi: 10.1016/j.na.2008.04.001 | Zbl 1176.45013
[011] [12] R. Grimmer, Resolvent operators for integral equations in a Banach space, AMS 273 (1982), 333-349. doi: 10.1090/S0002-9947-1982-0664046-4 | Zbl 0493.45015
[012] [13] J. Liang, J.H. Liu and Xiao Ti-Jun, Nonlocal problems for integrodifferential equations, DCDIS Series A: Math. Anal. 15 (2008), 815-824. | Zbl 1163.45010
[013] [14] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlin. Anal. TMA 4 (5) (1980), 985-999. | Zbl 0462.34041
[014] [15] P. Neittaanmäki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, Pure and Applied Mathematics, A series of Monographs and Textbooks, 179 (1994). | Zbl 0812.49001
[015] [16] M.D. Quinn and N. Carmichael, An approach to nonlinear control problem using fixed point methods, degree theory and pseudo-inverses, Numer. Funct. Anal. Optim. 7 (1984). doi: 197-219 | Zbl 0563.93013
[016] [17] S. Selvi and M.M. Arjunan, Controllability results for impulsive differential systems with finite delay, J. Nonlin. Sci. Appl. 5 (2012), 206-219. | Zbl 1293.93107
[017] [18] M. Schulz, Control Theory in Physics and Other Fields of Science: Concepts, Tools and Applications, Springer Tracts in Modern Physics, 215 (2006).
[018] [19] I.I. Vrabie, C₀-Semigroups and Applications, Mathematics Studies. 191 (2003).
[019] [20] J. Wang, Z. Fan and Y. Zhou, Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces, J. Optim. Theory Appl. 154 (2012), 292-302. doi: 10.1007/s10957-012-9999-3 | Zbl 1252.93028
[020] [21] J. Wang and W. Wei, Controllability of integrodifferential systems with nonlocal initial conditions in Banach spaces, J. Math. Sci. 177 (3) (2011), 459-465. doi: 10.1007/s10958-011-0471-y | Zbl 1290.93025