Fractional integro-differential inclusions with state-dependent delay
Khalida Aissani ; Mouffak Benchohra ; Khalil Ezzinbi
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 34 (2014), p. 153-167 / Harvested from The Polish Digital Mathematics Library

In this paper, we establish sufficient conditions for the existence of mild solutions for fractional integro-differential inclusions with state-dependent delay. The techniques rely on fractional calculus, multivalued mapping on a bounded set and Bohnenblust-Karlin's fixed point theorem. Finally, we present an example to illustrate the theory.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:270531
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1160,
     author = {Khalida Aissani and Mouffak Benchohra and Khalil Ezzinbi},
     title = {Fractional integro-differential inclusions with state-dependent delay},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {34},
     year = {2014},
     pages = {153-167},
     zbl = {1315.34081},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1160}
}
Khalida Aissani; Mouffak Benchohra; Khalil Ezzinbi. Fractional integro-differential inclusions with state-dependent delay. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 34 (2014) pp. 153-167. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1160/

[000] [1] S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations (Springer, New York, 2012). doi: 10.1007/978-1-4614-4036-9

[001] [2] S. Abbas, M. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations (Nova Science Publishers, New York, 2014).

[002] [3] R. Agarwal, B. de Andrade, and G. Siracusa, On fractional integro-differential equations with state-dependent delay, Comput. Math. Appl. 62 (2011) 1143-1149. doi: 10.1016/j.camwa.2011.02.033 | Zbl 1228.35262

[003] [4] R.P. Agarwal, M. Belmekki and M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Differ. Equat. 2009 (2009) Article ID 981728, 1-47. | Zbl 1182.34103

[004] [5] R.P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109 (2010) 973-1033. doi: 10.1007/s10440-008-9356-6 | Zbl 1198.26004

[005] [6] W.G. Aiello, H.I. Freedman and J. Wu, Analysis of a model representing stagestructured population growth with state-dependent time delay, SIAM J. Appl. Math. 52 (3) (1992) 855-869. doi: 10.1137/0152048 | Zbl 0760.92018

[006] [7] K. Aissani and M. Benchohra, Semilinear fractional order integro-differential equations with infinite delay in Banach spaces, Arch. Math. 49 (2013) 105-117. doi: 10.5817/AM2013-2-105 | Zbl 1299.26008

[007] [8] K. Aissani and M. Benchohra, Existence results for fractional integro-differential equations with state-dependent delay, Adv. Dyn. Syst. Appl. 9 (1) (2014) 17-30.

[008] [9] K. Aissani and M. Benchohra, Impulsive fractional differential inclusions with infinite delay, Electron. J. Differ. Eq. 2013 (265) 1-13. | Zbl 1295.34084

[009] [10] D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus Models and Numerical Methods (World Scientific Publishing, New York, 2012). | Zbl 1248.26011

[010] [11] M. Benchohra, K. Ezzinbi and S. Litimein, The existence and controllability results for fractional order integro-differential inclusions in Fréchet spaces, Proceedings A. Razm. Math. Inst. 162 (2013) 1-23. | Zbl 1306.34096

[011] [12] M. Benchohra, J. Henderson, S. Ntouyas and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008) 1340-1350. doi: 10.1016/j.jmaa.2007.06.021 | Zbl 1209.34096

[012] [13] M. Benchohra and S. Litimein, Fractional integro-differential equations with state-dependent delay on an unbounded domain, Afr. Diaspora J. Math. 12 (2) (2011) 13-25. | Zbl 1244.34098

[013] [14] M. Benchohra, S. Litimein, J.J. Trujillo and M.P. Velasco, Abstract fractional integro-differential equations with state-dependent delay, Int. J. Evol. Equat. 6 (2) (2012) 25-38. | Zbl 1263.26013

[014] [15] H.F. Bohnenblust and S. Karlin, On a theorem of Ville. Contribution to the theory of games, Ann. Math. Stud. No. 24, Princeton Univ. (1950) 155-160. | Zbl 0041.25701

[015] [16] A. Cernea, On the existence of mild solutions for nonconvex fractional semilinear differential inclusions, Electron. J. Qual. Theory Differ. Eq. 2012 (64) (2012) 1-15. | Zbl 06476214

[016] [17] A. Cernea, A note on mild solutions for nonconvex fractional semilinear differential inclusion, Ann. Acad. Rom. Sci. Ser. Math. Appl. 5 (2013) 35-45. | Zbl 1284.34025

[017] [18] L. Debnath and D. Bhatta, Integral Transforms and Their Applications (Second Edition) (CRC Press, 2007). | Zbl 1113.44001

[018] [19] K. Deimling, Multivalued Differential Equations (Walter De Gruyter, Berlin-New York, 1992). doi: 10.1515/9783110874228 | Zbl 0760.34002

[019] [20] K. Diethelm, The Analysis of Fractional Differential Equations (Springer, Berlin, 2010). | Zbl 1215.34001

[020] [21] J.P.C. dos Santos, C. Cuevas and B. de Andrade, Existence results for a fractional equation with state-dependent delay, Adv. Differ. Eq. 2011 (2011), Article ID 642013, 15 pages. | Zbl 1216.45003

[021] [22] R.D. Driver, A neutral system with state-dependent delay, J. Differ. Eq. 54 (1) (1984) 73-86. doi: 10.1016/0022-0396(84)90143-8

[022] [23] M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals 14 (2002) 433-440. doi: 10.1016/S0960-0779(01)00208-9

[023] [24] A.M.A. El-Sayed and A.G. Ibrahim, Multivalued fractional differential equations of arbitrary orders, Appl. Math. Comput. 68 (1995) 15-25. doi: 10.1016/0096-3003(94)00080-N

[024] [25] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications, 495 (Kluwer Academic Publishers, Dordrecht, 1999). doi: 10.1007/978-94-015-9195-9 | Zbl 0937.55001

[025] [26] J.K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funk. Ekvacioj 21 (1978) 11-41. | Zbl 0383.34055

[026] [27] F. Hartung, Parameter estimation by quasilinearization in functional differential equations with state-dependent delays: a numerical study, Nonlinear Anal. TMA 47 (7) (2001) 4557-4566. doi: 10.1016/S0362-546X(01)00569-7 | Zbl 1042.34582

[027] [28] F. Hartung, and J. Turi, Identification of parameters in delay equations with state-dependent delays, Nonlinear Anal. TMA 29 (11) (1997) 1303-1318. doi: 10.1016/S0362-546X(96)00100-9 | Zbl 0894.34071

[028] [29] F. Hartung, T.L. Herdman and J. Turi, Parameter identification in classes of neutral differential equations with state-dependent delays, Nonlinear Anal. TMA 39 (3) (2000) 305-325. doi: 10.1016/S0362-546X(98)00169-2 | Zbl 0955.34067

[029] [30] E. Hernández and M.A. McKibben, On state-dependent delay partial neutral functional-differential equations, Appl. Math. Comput. 186 (1) (2007) 294-301. doi: 10.1016/j.amc.2006.07.103 | Zbl 1119.35106

[030] [31] E. Hernández, M.A. McKibben and H.R. Henriquez, Existence results for partial neutral functional differential equations with state-dependent delay, Math. Comput. Mod. 49 (2009) 1260-1267. doi: 10.1016/j.mcm.2008.07.011 | Zbl 1165.34420

[031] [32] E. Hernández, A. Prokopczyk and L. Ladeira, A note on partial functional differential equations with state-dependent delay, Nonlinear Anal. RWA 7 (2006) 510-519. doi: 10.1016/j.nonrwa.2005.03.014 | Zbl 1109.34060

[032] [33] R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000). | Zbl 0998.26002

[033] [34] Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Unbounded Delay (Springer-Verlag, Berlin, 1991). | Zbl 0732.34051

[034] [35] A.A. Kilbas, Hari M. Srivastava and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier Science B.V., Amsterdam, 2006). | Zbl 1092.45003

[035] [36] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965) 781-786. | Zbl 0151.10703

[036] [37] F. Li and J. Zhang, Existence of mild solutions to fractional integrodifferential equations of neutral type with infinite delay, Adv. Diff. Equat. 2011 (2011), Article ID 963463, 1-15. | Zbl 1213.45008

[037] [38] F. Mainardi, P. Paradisi and R. Gorenflo, Probability distributions generated by fractional diffusion equations, in: Econophysics: An Emerging Science, J. Kertesz and I. Kondor, Eds. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000).

[038] [39] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1993).

[039] [40] A.V. Rezounenko, Partial differential equations with discrete and distributed state-dependent delays, J. Math. Anal. Appl. 326 (2) (2007) 1031-1045. doi: 10.1016/j.jmaa.2006.03.049 | Zbl 1178.35370

[040] [41] V.E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, Heidelberg; Higher Education Press, Beijing, 2010). | Zbl 1214.81004