We investigate in the present paper, the existence and uniqueness of solutions for functional differential inclusions involving a subdifferential operator in the infinite dimensional setting. The perturbation which contains the delay is single-valued, separately measurable, and separately Lipschitz. We prove, without any compactness condition, that the problem has one and only one solution.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1159, author = {Soumia Sa\"\i di and Mustapha Fateh Yarou}, title = {Delay perturbed evolution problems involving time dependent subdifferential operators}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {34}, year = {2014}, pages = {61-87}, zbl = {1327.34121}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1159} }
Soumia Saïdi; Mustapha Fateh Yarou. Delay perturbed evolution problems involving time dependent subdifferential operators. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 34 (2014) pp. 61-87. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1159/
[000] [1] J.P. Aubin and A. Celina, Differential Inclusions, Set-valued Maps and Viability Theory (Springer-Verlag Berlin Heidelberg, 1984). doi: 10.1007/978-3-642-69512-4
[001] [2] H. Benabdellah, C. Castaing and A. Salvadori, Compactness and discretization methods for differential inclusions and evolution problems, Atti. Sem. Math. Fis. Univ. Modena XLV (1997) 9-51. | Zbl 0876.34014
[002] [3] M. Bounkhel and M. Yarou, Existence results for first and second order nonconvex sweeping process with delay, Port. Math. 61 (2) (2004) 2007-2030. | Zbl 1098.49016
[003] [4] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Lecture Notes in Math. (North-Holland/American Elsevier, Amsterdam/New York, 1973). | Zbl 0252.47055
[004] [5] C. Castaing, A.G. Ibrahim and M. Yarou, Existence problems in second order evolution inclusions: discretization and variational approach, Taiwanese J. Math. 12 (6) (2008) 1435-1477. | Zbl 1173.35302
[005] [6] C. Castaing, A. Jofré and A. Salvadori, Control problems governed by functional evolution inclusions with Young measures, J. Nonlin. Convex Anal. 5 (2004) 131-152. | Zbl 1077.49002
[006] [7] C. Castaing and M.D.P Monteiro Marques, Topological properties of solution sets for sweeping processes with delay, Port. Math. 54 (1997) 485-507. | Zbl 0895.34053
[007] [8] C. Castaing, A. Salvadori and L. Thibault, Functional evolution equations governed by nonconvex sweeping process, J. Nonlin. Convex Anal. 2 (2) (2001), 217-241. | Zbl 0999.34062
[008] [9] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions. Lecture Notes in Math., 580 (Springer-Verlag, Berlin, Heidelberg, 1977). doi: 10.1007/BFb0087685
[009] [10] J.F. Edmond, Delay perturbed sweeping process, Set-Valued Anal. 14 (2006) 295-317. doi: 10.1007/s11228-006-0021-9 | Zbl 1122.34060
[010] [11] E. Mitidieri and I. Vrabie, Existence for nonlinear functional differential equations, Hiroshima Math. J. 17 (1987) 627-649. | Zbl 0655.34055
[011] [12] M. Kisielewicz, Differential Inclusions and Optimal Control (Kluwer, Dordrecht, The Netherlands, 1991).
[012] [13] J.C. Peralba, Équations d'évolution dans un espace de Hilbert, associées à des opérateurs sous-différentiels. Thèse de doctorat de spécialité (Languedoc, 1973).
[013] [14] S. Saïdi, L. Thibault and M. Yarou, Relaxation of optimal control problems involving time dependent subdifferential operators, Numerical Funct. Anal. Optimization 34 (10) (2013) 1156-1186. doi: 10.1080/01630563.2013.807287 | Zbl 1288.34057