On the solvability of Dirichlet problem for the weighted p-Laplacian
Dominik Mielczarek ; Jerzy Rydlewski ; Ewa Szlachtowska
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 34 (2014), p. 89-103 / Harvested from The Polish Digital Mathematics Library

In this paper we are concerned with the existence and uniqueness of the weak solution for the weighted p-Laplacian. The purpose of this paper is to discuss in some depth the problem of solvability of Dirichlet problem, therefore all proofs are contained in some detail. The main result of the work is the existence and uniqueness of the weak solution for the Dirichlet problem provided that the weights are bounded. Furthermore, under this assumption the solution belongs to the Sobolev space W1,p(Ω).

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:270397
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1156,
     author = {Dominik Mielczarek and Jerzy Rydlewski and Ewa Szlachtowska},
     title = {On the solvability of Dirichlet problem for the weighted p-Laplacian},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {34},
     year = {2014},
     pages = {89-103},
     zbl = {1328.35057},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1156}
}
Dominik Mielczarek; Jerzy Rydlewski; Ewa Szlachtowska. On the solvability of Dirichlet problem for the weighted p-Laplacian. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 34 (2014) pp. 89-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1156/

[000] [1] J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936) 396-414. doi: 10.1090/S0002-9947-1936-1501880-4 | Zbl 0015.35604

[001] [2] P.A. Cojuhari, Generalized Hardy type inequalities and some applications to spectral theory, Operator theory, operator algebras and related topics, Theta Found., Bucharest (1997) 79-99. | Zbl 0943.47015

[002] [3] P. Cojuhari and A. Gheondea, Closed embeddings of Hilbert spaces. J. Math. Anal. Appl. 369 (2010) 60-75. doi: 10.1016/j.jmaa.2010.02.027 | Zbl 1198.46022

[003] [4] P. Cojuhari and, A. Gheondea, Closely embedded Kreĭn spaces and applications to Dirac operators, J. Math. Anal. Appl. 376 (2) (2011) 540-550. doi: 10.1016/j.jmaa.2010.10.059 | Zbl 1216.46022

[004] [5] J.R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1961) 436-446. doi: 10.1090/S0002-9947-1967-0217574-1 | Zbl 0157.20103

[005] [6] R.C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947) 265-292. doi: 10.1090/S0002-9947-1947-0021241-4

[006] [7] A. Kufner, Weighted Sobolev Spaces (Teubner-Texte zur Mathematik, Band 31, 1980).

[007] [8] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961) 29-43. doi: 10.1090/S0002-9947-1961-0133024-2 | Zbl 0102.32701

[008] [9] V. Smulian, Sur la dérivabilité de la norme dans l'espace de Banach, Dokl. Akad. Nauk SSSR 27 (1940) 643-648. | Zbl 0023.32604

[009] [10] E. Szlachtowska, On weak solutions of Dirichlet problem for weighted p-Laplacian, Opuscula Math. 32 (4) (2012) 775-781. doi: 10.7494/OpMath.2012.32.4.775 | Zbl 1263.35084