Properties of generalized set-valued stochastic integrals
Michał Kisielewicz
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 34 (2014), p. 131-147 / Harvested from The Polish Digital Mathematics Library

The paper is devoted to properties of generalized set-valued stochastic integrals defined in [10]. These integrals generalize set-valued stochastic integrals defined by E.J. Jung and J.H. Kim in the paper [4]. Up to now we were not able to construct any example of set-valued stochastic processes, different on a singleton, having integrably bounded set-valued integrals defined in [4]. It was shown by M. Michta (see [11]) that in the general case set-valued stochastic integrals defined by E.J. Jung and J.H. Kim, are not integrably bounded. Generalized set-valued stochastic integrals, considered in the paper, are in some non-trivial cases square integrably bounded and can be applied in the theory of stochastic differential equations with set-valued solutions.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:270400
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1155,
     author = {Micha\l\ Kisielewicz},
     title = {Properties of generalized set-valued stochastic integrals},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {34},
     year = {2014},
     pages = {131-147},
     zbl = {1329.60163},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1155}
}
Michał Kisielewicz. Properties of generalized set-valued stochastic integrals. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 34 (2014) pp. 131-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1155/

[000] [1] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977) 149-182. doi: 10.1016/0047-259X(77)90037-9 | Zbl 0368.60006

[001] [2] W. Hildenbrand, Core and Equilibria of a Large Economy (Princeton University Press, 1974). | Zbl 0351.90012

[002] [3] Sh. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis I, (Kluwer Academic Publishers, 1997). doi: 10.1007/978-1-4615-6359-4 | Zbl 0887.47001

[003] [4] E.J. Jung and J.H. Kim, On the set-valued stochastic integrals, Stoch. Anal. Appl. 21 (2)(2003) 401-418. doi: 10.1081/SAP-120019292 | Zbl 1049.60048

[004] [5] M. Kisielewicz, Viability theorems for stochastic inclusions, Discuss. Math. 15 (1995) 61-74. | Zbl 0844.93072

[005] [6] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Stoch. Anal. Appl. 15 (5) (1997) 783-800. doi: 10.1080/07362999708809507 | Zbl 0891.93070

[006] [7] M. Kisielewicz, Some properties of set-valued stochastic integrals, J. Math. Anal. Appl. 388 (2012) 984-995. doi: 10.1016/j.jmaa.2011.10.050 | Zbl 1235.60058

[007] [8] M. Kisielewicz, Stochastic Differential Inclusions and Applications (Springer, New York, 2013). doi: 10.1007/978-1-4614-6756-4 | Zbl 1277.93002

[008] [9] M. Kisielewicz, Some properties of set-valued stochastic integrals of multiprocesses with finite Castaing representations, Comm. Math. 53 (2) (2013) 213-226. | Zbl 1303.60043

[009] [10] M. Kisielewicz, Martingale representation theorem for set-valued martingales, J. Math. Anal. Appl. 409 (2014) 111-118. doi: 10.1016/j.jmaa.2013.06.066 | Zbl 1306.60044

[010] [11] M. Michta, Remarks on unboundedness of set-valued Itô stochastic integrals, J. Math. Anal. Appl. (presented to print). | Zbl 1303.60044