In this paper, by using the topological degree theory for multivalued maps and the method of guiding functions in Hilbert spaces we deal with the existence of periodic oscillations for a class of feedback control systems in Hilbert spaces.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1151, author = {Nguyen Van Loi}, title = {On periodic oscillations for a class of feedback control systems in Hilbert spaces}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {33}, year = {2013}, pages = {205-219}, zbl = {1300.34148}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1151} }
Nguyen Van Loi. On periodic oscillations for a class of feedback control systems in Hilbert spaces. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 33 (2013) pp. 205-219. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1151/
[000] [1] R. Bader and W. Kryszewski, Fixed-point index for compositions of set-valued maps with proximally ∞-connected values on arbitrary ANR's, Set-Valued Anal. 2 (3) (1994), 459-480. doi: 10.1007/BF01026835 | Zbl 0846.55001
[001] [2] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, 1976. | Zbl 0328.47035
[002] [3] Yu.G. Borisovich, B.D. Gel'man, A.D. Myshkis and V.V. Obukhovskii, Introduction to the Theory of Multivalued Maps and Differential inclusions, Second edition, Librokom, Moscow, 2011 (in Russian).
[003] [4] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis and V.V. Obukhovskii, Topological methods in the theory of fixed points of multivalued mappings, (Russian) Uspekhi Mat. Nauk 35 (1980), 59-126. English translation: Russian Math. Surveys 35 (1980), 65-143. doi: 10.1070/RM1980v035n01ABEH001548
[004] [5] K. Borsuk, Theory of Retracts. Monografie Matematyczne, 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967. | Zbl 0153.52905
[005] [6] I. Ekeland and R. Temam, Convex Analysis and Variation Problems, North Holland, Amsterdam, 1979. | Zbl 0546.90057
[006] [7] R.E. Gaines and J.L. Mawhin, Coincidence degree and nonlinear differential equations, Lecture Notes in Mathematics, no. 568, Springer-Verlag, Berlin-New York, 1977. | Zbl 0339.47031
[007] [8] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, 2nd edition. Topological Fixed Point Theory and Its Applications, 4. Springer, Dordrecht, 2006. | Zbl 1107.55001
[008] [9] L. Górniewicz, A. Granas and W. Kryszewski, On the homotopy method in the fixed point index theory of multi-valued mappings of compact absolute neighborhood retracts, J. Math. Anal. Appl. 161 (2) (1991), 457-473. doi: 10.1016/0022-247X(91)90345-Z | Zbl 0757.54019
[009] [10] Ph. Hartman, Ordinary Differential Equations, Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA], Classics in Applied Mathematics, 38, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
[010] [11] D.M. Hyman, On decreasing sequences of compact absolute retracts, Fund Math. 64 (1969), 91-97. | Zbl 0174.25804
[011] [12] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications 7, Walter de Gruyter, Berlin-New York, 2001. doi: 10.1515/9783110870893 | Zbl 0988.34001
[012] [13] N.V. Loi, Method of guiding functions for differential inclusions in a Hilbert space, Differ. Uravn. 46 (10) (2010), 1433-1443 (in Russian); English tranl.: Differ. Equat. 46 (10) (2010), 1438-1447. doi: 10.1134/S0012266110100071
[013] [14] N.V. Loi, V. Obukhovskii and P. Zecca, Non-smooth guiding functions and periodic solutions of functional differential inclusions with infinite delay in Hilbert spaces, Fixed Point Theory 13 (2) (2012), 565-582. | Zbl 1287.34057
[014] [15] A.D. Myshkis, Generalizations of the theorem on a stationary point of a dynamical system inside a closed trajectory, (Russian) Math. Sb. 34 (1954), 525-540.
[015] [16] V. Obukhovski, P. Zecca, N.V. Loi and S. Kornev, Method of Guiding Functions in Problems of Nonlinear Analysis, Lecture Notes in Math. 2076, Springer, Berlin, 2013. doi: 10.1007/978-3-642-37070-0 | Zbl 1282.34003
[016] [17] L. Schwartz, Cours d'Analyse 1, Second edition, Hermann, Paris, 1981.