Existence results for impulsive semilinear fractional differential inclusions with delay in Banach spaces
Hammouche Hadda ; Guerbati Kaddour ; Benchohra Mouffak ; Abada Nadjat
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 33 (2013), p. 149-170 / Harvested from The Polish Digital Mathematics Library

In this paper, we introduce a new concept of mild solution of some class of semilinear fractional differential inclusions of order 0 < α < 1. Also we establish an existence result when the multivalued function has convex values. The result is obtained upon the nonlinear alternative of Leray-Schauder type.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:270480
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1149,
     author = {Hammouche Hadda and Guerbati Kaddour and Benchohra Mouffak and Abada Nadjat},
     title = {Existence results for impulsive semilinear fractional differential inclusions with delay in Banach spaces},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {33},
     year = {2013},
     pages = {149-170},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1149}
}
Hammouche Hadda; Guerbati Kaddour; Benchohra Mouffak; Abada Nadjat. Existence results for impulsive semilinear fractional differential inclusions with delay in Banach spaces. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 33 (2013) pp. 149-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1149/

[00000] [1] S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012. doi: 10.1007/978-1-4614-4036-9

[00001] [2] R.P. Agarwal, M. Benchohra and S. Hamani, Boundary value problems for fractional differential equations, Adv. Stud. Contemp. Math. 16 (2008), 181-196.

[00002] [3] A. Anguraj, P. Karthikeyan and G.M. N'Guérékata, Nonlocal Cauchy problem for some fractional abstract differential equations in Banach spaces, Commun. Math. Anal. 6 (2009).

[00003] [4] D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York, 2012.

[00004] [5] M. Belmekki and M. Benchohra, Existence results for fractional order semilinear functional differential equations, Proc. A. Razmadze Math. Inst. 146 (2008), 9-20.

[00005] [6] M. Belmekki, M. Benchohra and L. Górniewicz, Semilinear functional differential equations with fractional order and infinite delay, Fixed Point Th. 9 (2008), 423-439.

[00006] [7] M. Benchohra, J.R. Graef and S. Hamani, Existence results for boundary value problems with nonlinear fractional differential equations, Appl. Anal. 87 (2008), 851-863. doi: 10.1080/00036810802307579

[00007] [8] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008), 1340-1350. doi: 10.1016/j.jmaa.2007.06.021

[00008] [9] M. Benchohra, S. Litimein and G. N'Guérékata, On fractional integro-differential inclusions with state-dependent delay in Banach spaces, Appl. Anal. 92 (2013), 335-350. doi: 10.1080/00036811.2011.616496

[00009] [10] C. Chen and M. Li, On fractional resolvent operator functions Semigroup Forum. 80 (2010), 121-142. doi: 10.1007/s00233-009-9184-7

[00010] [11] C-Cuevas and J-C. de Souza, S-asymptotically W-periodic solutions of semilinear fractional integro-differential equations, Appl. Math. Lett. 22 (2009), 865-870. doi: 10.1016/j.aml.2008.07.013

[00011] [12] C-Cuevas and J-C. de Souza, Existence of S-asymptotically W-periodic solutions of fractional order functional integro-differential equations with infinite delay, Nonlinear Anal. 72 (2010), 1680-1689. doi: 10.1016/j.na.2009.09.007

[00012] [13] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8

[00013] [14] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

[00014] [15] A.A. Kilbas, Hari M. Srivastava and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

[00015] [16] V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.

[00016] [17] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.

[00017] [18] M. Li and Q. Zheng, On spectral inclusions and approximations of α-times resolvent families, Semigroup Forum. 69 (2004), 356-368.

[00018] [19] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.

[00019] [20] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[00020] [21] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.

[00021] [22] V.E. Tarasov, Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, 2010.