Differential inclusions and multivalued integrals
Kinga Cichoń ; Mieczysław Cichoń ; Bianca Satco
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 33 (2013), p. 171-191 / Harvested from The Polish Digital Mathematics Library

In this paper we consider the nonlocal (nonstandard) Cauchy problem for differential inclusions in Banach spaces x'(t) ∈ F(t,x(t)), x(0)=g(x), t ∈ [0,T] = I. Investigation over some multivalued integrals allow us to prove the existence of solutions for considered problem. We concentrate on the problems for which the assumptions are expressed in terms of the weak topology in a Banach space. We recall and improve earlier papers of this type. The paper is complemented by a short survey about multivalued integration including Pettis and Henstock-Kurzweil-Pettis multivalued integrals.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:270414
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1147,
     author = {Kinga Cicho\'n and Mieczys\l aw Cicho\'n and Bianca Satco},
     title = {Differential inclusions and multivalued integrals},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {33},
     year = {2013},
     pages = {171-191},
     zbl = {1298.34110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1147}
}
Kinga Cichoń; Mieczysław Cichoń; Bianca Satco. Differential inclusions and multivalued integrals. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 33 (2013) pp. 171-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1147/

[000] [1] A. Amrani, Lemme de Fatou pour l'intégrale de Pettis, Publ. Math. 42 (1998), 67-79. doi: 10.5565/PUBLMAT_42198_02 | Zbl 0933.28005

[001] [2] A. Amrani and Ch. Castaing, Weak compactness in Pettis integration, Bull. Polish Acad. Sci. Math. 45 (1997), 139-150.

[002] [3] A. Amrani, Ch. Castaing and M. Valadier, Convergence in Pettis norm under extreme point condition, preprint Univ. Montpellier II, 1998/09.

[003] [4] G. Anello and P. Cubiotti, Parametrization of Riemann-measurable selections for multifunctions of two variables with applications to differential inclusions, Ann. Polon. Math. 83 (2004), 179-187. doi: 10.4064/ap83-2-8

[004] [5] O. Arino, S. Gautier and J.P. Penot, A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations, Funkc. Ekvac. 27 (1984), 273-279. | Zbl 0599.34008

[005] [6] Z. Artstein and J. Burns, Integration of compact set valued functions, Pacific J. Math. 58 (1975), 297-3-7. | Zbl 0324.28006

[006] [7] R.J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12. doi: 10.1016/0022-247X(65)90049-1

[007] [8] D. Azzam-Laouir and I. Boutana, Application of Pettis integration to differential inclusions with three-point boundary conditions in Banach spaces, Electron. J. Differ. Equ. 173 (2007), 1-8.

[008] [9] D. Azzam, C. Castaing and L. Thibault, Three boundary value problems for second order differential inclusions in Banach spaces. Well-posedness in optimization and related topics, Control Cybernet. 31 (2002), 659-693. | Zbl 1111.34303

[009] [10] J. Banaś and J. Rivero, Measure of weak noncompactness, Ann. Mat. Pura Appl. 125 (1987), 131-143.

[010] [11] B. Cascales and J. Rodrígues, Birkhoff integral for multi-valued functions, J. Math. Anal. Appl. 297 (2004), 540-560. doi: 10.1016/j.jmaa.2004.03.026 | Zbl 1066.46037

[011] [12] B. Cascales, V. Kadets and J. Rodrígues, The Pettis integral for multi-valued functions via single-valued ones, J. Math. Anal. Appl. 332 (2007), 1-10. doi: 10.1016/j.jmaa.2006.10.003 | Zbl 1119.28009

[012] [13] Ch. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, LNM 580, Springer, Berlin, 1977. doi: 10.1007/BFb0087685

[013] [14] S.-N. Chow and J.D. Schuur, Fundamental theory of contingent differential equations in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 133-144. doi: 10.1090/S0002-9947-1973-0324162-8 | Zbl 0282.34042

[014] [15] S.-N. Chow and J.D. Schuur, An existence theorem for ordinary differential equations in Banach spaces, Bull. Amer. Math. Soc. 77 (1971), 1018-1020. doi: 10.1090/S0002-9904-1971-12843-4

[015] [16] K. Cichoń and M. Cichoń, Some applications of nonabsolute integrals in the theory of differential inclusions in Banach spaces, in: Vector Measures, Integration and Related Topics. Operator Theory: Advances and Applications 201 (2010), 115-124. | Zbl 1253.34055

[016] [17] M. Cichoń, Weak solutions of differential equations in Banach spaces, Disc. Math. Differ. Incl. 15 (1995), 5-14.

[017] [18] M. Cichoń, Differential inclusions and abstract control problems, Bull. Austral. Math. Soc. 53 (1996), 109-122. doi: 10.1017/S0004972700016774 | Zbl 0849.34016

[018] [19] M. Cichoń, On some selections of multifunctions, Bul. Stiint. Univ. Baia Mare (B) 16 (2000), 315-322. | Zbl 0991.54017

[019] [20] M. Cichoń, Convergence theorems for the Henstock-Kurzweil-Pettis integral, Acta Math. Hungar. 92 (2001), 75-82. doi: 10.1023/A:1013756111769 | Zbl 1001.26003

[020] [21] M. Cichoń, I. Kubiaczyk and A. Sikorska, Henstock-Kurzweil and Henstock-Kurzweil-Pettis integrals and some existence theorems, Proc. ISCM Herlany 1999 (2000), 53-56.

[021] [22] M. Cichoń, On solutions of differential equations in Banach spaces, Nonlin. Anal. Th. Meth. Appl. 60 (2005), 651-667. doi: 10.1016/j.na.2004.09.041 | Zbl 1061.34043

[022] [23] F. DeBlasi, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259-262.

[023] [24] G. Debreu, Integration of correspondences, in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probab. 1965/66, Berkeley, 1967, pp. 351-372.

[024] [25] A. Dinghas, Zum Minkowskischen Integralbegriff abgeschlossener Mengen, Math. Zeit. 66 (1956), 173-188. doi: 10.1007/BF01186606 | Zbl 0071.37902

[025] [26] L. Di Piazza and K. Musiał, Set-valued Kurzweil-Henstock-Pettis integral, Set-Valued Anal. 13 (2005), 167-179. doi: 10.1007/s11228-004-0934-0 | Zbl 1100.28008

[026] [27] L. Di Piazza and K. Musiał, A decomposition theorem for compact-valued Henstock integral, Monatsh. Math. 148 (2006), 119-126. doi: 10.1007/s00605-005-0376-2 | Zbl 1152.28016

[027] [28] K. El Amri and Ch. Hess, On the Pettis integral of closed valued multifunctions, Set-Valued Anal. 8 (2000), 329-360. doi: 10.1023/A:1026547222209 | Zbl 0974.28009

[028] [29] C. Godet-Thobie and B. Satco, Decomposability and uniform integrability in Pettis integration, Quaest. Math. 29 (2006), 39-58. doi: 10.2989/16073600609486148 | Zbl 1108.28010

[029] [30] R.A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, AMS, Providence, Rhode Island, 1994. | Zbl 0807.26004

[030] [31] Ch. Hess, Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math. Anal. Appl. 153 (1990), 226-249. doi: 10.1016/0022-247X(90)90275-K

[031] [32] Ch. Hess and H. Ziat, Théorème de Komlós pour des multifunctions intégrable au sens de Pettis et applications, Ann. Sci. Math. Québec 26 (2002), 181-198.

[032] [33] M. Hukuhara, Intégration des applications measurable dont la valeur est un compact convexe, Funkcial. Ekvac. 10 (1967), 205-223. | Zbl 0161.24701

[033] [34] J. Jarnik and J. Kurzweil, Integral of multivalued mappings and its connection with differential relations, Časopis pro peštováni matematiky 108 (1983), 8-28. | Zbl 0536.28006

[034] [35] T. Maruyama, A generalization of the weak convergence theorem in Sobolev spaces with application to differential inclusions in a Banach space, Proc. Japan Acad. (A) Math Sci. 77 (2001), 5-10. | Zbl 0980.34057

[035] [36] K. Musiał, Topics in the theory of Pettis integration, in: School of Measure theory and Real Analysis, Grado, Italy, May 1992.

[036] [37] B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304. doi: 10.1090/S0002-9947-1938-1501970-8 | Zbl 0019.41603

[037] [38] J. Saint-Raymond, Riemann-measurable selections, Set-Valued Anal. 2 (1994), 481-485. doi: 10.1007/BF01026836 | Zbl 0851.54021

[038] [39] B. Satco, Existence results for Urysohn integral inclusions involving the Henstock integral, J. Math. Anal. Appl. 336 (2007), 44-53. doi: 10.1016/j.jmaa.2007.02.050 | Zbl 1123.45004

[039] [40] B. Satco, A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications, Czechoslovak Math. J. 56 (2006), 1029-1047. doi: 10.1007/s10587-006-0078-5 | Zbl 1164.28301

[040] [41] B. Satco, Volterra integral inclusions via Henstock-Kurzweil-Pettis integral, Discuss. Math. Differ. Incl. Control Optim. 26 (2006), 87-101. doi: 10.7151/dmdico.1066 | Zbl 1131.45001

[041] [42] B. Satco, Second order three boundary value problem in Banach spaces via Henstock and Henstock-Kurzweil-Pettis integral, J. Math. Anal. Appl. 332 (2007), 919-933. doi: 10.1016/j.jmaa.2006.10.081 | Zbl 1127.34033

[042] [43] M. Talagrand, Closed convex hull of set of measurable functions, Riemann-measurable functions and measurability of translations, Ann. Inst. Fourier 32 (1982), 39-69. doi: 10.5802/aif.859 | Zbl 0452.28004

[043] [44] A.A. Tolstonogov, On comparison theorems for differential inclusions in locally convex spaces. I. Existence of solutions, Differ. Urav. 17 (1981), 651-659 (in Russian).

[044] [45] M. Valadier, On the Strassen theorem, in: Lect. Notes in Econ. Math. Syst. 102 203-215, ed. J.-P. Aubin, Springer, Berlin, 1974.

[045] [46] H. Ziat, Convergence theorems for Pettis integrable multifunctions, Bull. Polish Acad. Sci. Math. 45 (1997), 123-137. | Zbl 0903.46042