A note on variational-type inequalities for (η,θ,δ)-pseudomonotone-type set-valued mappings in nonreflexive Banach spaces
Magdalena Nockowska-Rosiak
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 33 (2013), p. 41-45 / Harvested from The Polish Digital Mathematics Library

In this paper the existence of solutions to variational-type inequalities problems for (η,θ,δ)- pseudomonotone-type set-valued mappings in nonreflexive Banach spaces introduced in [4] is considered. Presented theorem does not require a compact set-valued mapping, but requires a weaker condition 'locally bounded' for the mapping.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:270215
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1145,
     author = {Magdalena Nockowska-Rosiak},
     title = {A note on variational-type inequalities for ($\eta$,$\theta$,$\delta$)-pseudomonotone-type set-valued mappings in nonreflexive Banach spaces},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {33},
     year = {2013},
     pages = {41-45},
     zbl = {1297.49015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1145}
}
Magdalena Nockowska-Rosiak. A note on variational-type inequalities for (η,θ,δ)-pseudomonotone-type set-valued mappings in nonreflexive Banach spaces. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 33 (2013) pp. 41-45. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1145/

[000] [1] S.-S. Chang, B.-S. Lee and Y.-Q. Chen, Variational inequalities for monotone operators in nonreflexive Banach spaces, Appl. Math. Lett. 8 (6) (1995), 29-34. doi: 10.1016/0893-9659(95)00081-Z | Zbl 0840.47052

[001] [2] K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310. doi: 10.1007/BF01353421 | Zbl 0093.36701

[002] [3] B.-S. Lee and G.-M. Lee, Variational inequalities for (η,θ)-pseudomonotone operators in nonreflexive Banach spaces, Appl. Math. Lett. 12 (5) (1999), 13-17. doi: 10.1016/S0893-9659(99)00050-6 | Zbl 0954.47052

[003] [4] B.-S. Lee, G.-M. Lee and S.-J. Lee, Variational-type inequalities for (η,θ,δ)-pseudomonotone-type set-valued mappings in nonreflexive Banach spaces, Appl. Math. Lett. 15 (1) (2002), 109-114. doi: 10.1016/S0893-9659(01)00101-X | Zbl 1032.47043

[004] [5] B.-S. Lee and J.-D. Noh, Minty's lemma for (θ,η)-pseudomonotone-type set-valued mappings and applications, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 9 (1) (2002), 47-55.

[005] [6] R.U. Verma, Variational inequalities involving strongly pseudomonotone hemicontinuous mappings in nonreflexive Banach spaces, Appl. Math. Lett. 11 (2) (1998), 41-43. doi: 10.1016/S0893-9659(98)00008-1 | Zbl 06587015

[006] [7] P.J. Watson, Variational inequalities in nonreflexive Banach spaces, Appl. Math. Lett. 10 (2) (1997), 45-48. doi: 10.1016/S0893-9659(97)00009-8 | Zbl 0907.49003