Existence and controllability of fractional-order impulsive stochastic system with infinite delay
Toufik Guendouzi
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 33 (2013), p. 65-87 / Harvested from The Polish Digital Mathematics Library

This paper is concerned with the existence and approximate controllability for impulsive fractional-order stochastic infinite delay integro-differential equations in Hilbert space. By using Krasnoselskii's fixed point theorem with stochastic analysis theory, we derive a new set of sufficient conditions for the approximate controllability of impulsive fractional stochastic system under the assumption that the corresponding linear system is approximately controllable. Finally, an example is provided to illustrate the obtained theory.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:270357
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1144,
     author = {Toufik Guendouzi},
     title = {Existence and controllability of fractional-order impulsive stochastic system with infinite delay},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {33},
     year = {2013},
     pages = {65-87},
     zbl = {1298.34151},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1144}
}
Toufik Guendouzi. Existence and controllability of fractional-order impulsive stochastic system with infinite delay. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 33 (2013) pp. 65-87. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1144/

[000] [1] N. Abada, M. Benchohra and H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Diff. Equ. 246 (2009), 3834-3863. doi: 10.1016/j.jde.2009.03.004 | Zbl 1171.34052

[001] [2] P. Balasubramaniam, S.K. Ntouyas and D. Vinayagam, Existence of solutions of semilinear stochastic delay evolution inclusions in a Hilbert space, J. Math. Anal. Appl. 305 (2005) 438-451. doi: 10.1016/j.jmaa.2004.10.063 | Zbl 1067.60035

[002] [3] J. Dabas, A. Chauhan and M. Kumar, Existence of the mild solutions for impulsive fractional equations with infinite delay, Int. J. Differ. Equ. 20 (2011). Article ID 793023. | Zbl 1239.34094

[003] [4] X. Fu and K. Mei, Approximate controllability of semilinear partial functional differential systems, J. Dynam. Control Syst. 15 (2009) 425-443. doi: 10.1007/s10883-009-9068-x | Zbl 1203.93022

[004] [5] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V, Amsterdam, 2006. | Zbl 1092.45003

[005] [6] J. Klamka, Constrained controllability of nonlinear systems, J. Math. Anal. and Appl. 201 (2) (1996), 365-374. doi: 10.1006/jmaa.1996.0260 | Zbl 0858.93014

[006] [7] J. Klamka, Constrained approximate boundary controllability, IEEE Transactions on Automatic Control AC-42 (2) (1997), 280-284. doi: 10.1109/9.554411 | Zbl 0876.93012

[007] [8] J. Klamka, Schauder fixed point theorem in nonlinear controllability problems, Control Cybernet. 29 (2000), 153-165. | Zbl 1011.93001

[008] [9] J. Klamka, Constrained exact controllability of semilinear systems, Systems and Control Letters 4 (2) (2002), 139-147. doi: 10.1016/S0167-6911(02)00184-6 | Zbl 1003.93005

[009] [10] J. Klamka, Stochastic controllability of systems with multiple delays in control, Int. J. Applied Math. Computer Sci. 19 (2009), 39-47. doi: 10.2478/v10006-009-0003-9 | Zbl 1169.93005

[010] [11] J. Klamka, Constrained controllability of semilinear systems with delays, Nonlinear Dynamics 56 (2009), 169-177. doi: 10.1007/s11071-008-9389-4 | Zbl 1170.93009

[011] [12] N.I. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces, SIAM J. Control Optim. 42 (2003), 1604-1622. doi: 10.1137/S0363012901391688 | Zbl 1084.93006

[012] [13] N.I. Mahmudov and A. Denker, On controllability of linear stochastic systems, Int. J. Control 73 (2000), 144-151. doi: 10.1080/002071700219849 | Zbl 1031.93033

[013] [14] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993. | Zbl 0789.26002

[014] [15] P. Muthukumar and P. Balasubramaniam, Approximate controllability of mixed stochastic Volterra-Fredholm type integrodifferential systems in Hilbert space, J. Franklin Inst. 348 (2011), 2911-2922. doi: 10.1016/j.jfranklin.2011.10.001 | Zbl 1254.93028

[015] [16] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[016] [17] Y. Ren, Q. Zhou and L. Chen, Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with Poisson jumps and infinite delay, J. Optim. Theory Appl. 149 (2011), 315-331. doi: 10.1007/s10957-010-9792-0 | Zbl 1241.34089

[017] [18] J. Sabatier, O.P. Agrawal and J.A. Tenreiro-Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag, New York, 2007. doi: 10.1007/978-1-4020-6042-7 | Zbl 1116.00014

[018] [19] R. Sakthivel and E. R. Anandhi, Approximate controllability of impulsive differential equations with state-dependent delay, Int. J. Control. 83 (2010), 387-393. doi: 10.1080/00207170903171348 | Zbl 1184.93021

[019] [20] R. Sakthivel, Y. Ren and N.I. Mahmudov, Approximate controllability of second-order stochastic differential equation with impulsive effects, Modern Phys. Lett. (B) 24 (2010), 1559-1572. doi: 10.1142/S0217984910023359 | Zbl 1211.93026

[020] [21] R. Sakthivel, J.J. Nieto and N.I. Mahmudov, Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay, Taiwanese J. Math. 14 (2010), 1777-1797. | Zbl 1220.93011

[021] [22] R. Sakthivel, S. Suganya and S.M. Anthoni, Approximate controllability of fractional stochastic evolution equations, Computers & Mathematics with Applications 63 (2012), 660-668. doi: 10.1016/j.camwa.2011.11.024 | Zbl 1238.93099

[022] [23] R. Sakthivel, P. Revathi and Yong Ren, Existence of solutions for nonlinear fractional stochastic differential equations, Nonlin. Anal. (2012). doi: 10.1016/j.na.2012.10.009. | Zbl 1261.34063

[023] [24] L. Shen and J. Sun, Relative controllability of stochastic nonlinear systems with delay in control, Nonlin. Anal. RWA 13 (2012), 2880-2887. doi: 10.1016/j.nonrwa.2012.04.017 | Zbl 1254.93029

[024] [25] X.B. Shu, Y. Lai and Y. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlin. Anal. TMA 74 (2011), 2003-2011. doi: 10.1016/j.na.2010.11.007 | Zbl 1227.34009

[025] [26] L.W. Wang, Approximate controllability for integrodifferential equations with multiple delays, J. Optim. Theory Appl. 143 (2009), 185-206. doi: 10.1007/s10957-009-9545-0 | Zbl 1176.93018