Input-to-state stability of neutral type systems
Michael I. Gil'
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 33 (2013), p. 5-16 / Harvested from The Polish Digital Mathematics Library

We consider the system (t)-ηdR̃(τ)(t-τ)=0ηdR(τ)x(t-τ)+[Fx](t)+u(t) (ẋ(t) ≡ dx(t)/dt), where x(t) is the state, u(t) is the input, R(τ),R̃(τ) are matrix-valued functions, and F is a causal (Volterra) mapping. Such equations enable us to consider various classes of systems from the unified point of view. Explicit input-to-state stability conditions in terms of the L²-norm are derived. Our main tool is the norm estimates for the matrix resolvents, as well as estimates for fundamental solutions of the linear parts of the considered systems, and the Ostrowski inequality for determinants.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:270674
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1143,
     author = {Michael I. Gil'},
     title = {Input-to-state stability of neutral type systems},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {33},
     year = {2013},
     pages = {5-16},
     zbl = {06238329},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1143}
}
Michael I. Gil'. Input-to-state stability of neutral type systems. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 33 (2013) pp. 5-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1143/

[000] [1] M. Arcak and A. Teel, Input-to-state stability for a class of Lur'e systems, Automatica 38 (11) (2002), 1945-1949. doi: 10.1016/S0005-1098(02)00100-0 | Zbl 1011.93101

[001] [2] C. Corduneanu, Functional Equations with Causal Operators, Taylor and Francis, London, 2002.

[002] [3] A. Feintuch and R. Saeks, System Theory. A Hilbert Space Approach, Ac. Press, New York, 1982.

[003] [4] T.T. Georgiou and M.C. Smith, Graphs, causality, and stabilizability: linear, shift-invariant systems on L²[0,8), Math. Control Signals Systems 6 (1993), 195-223. doi: 10.1007/BF01211620 | Zbl 0796.93004

[004] [5] M.I. Gil', Stability of Finite and Infinite Dimensional Systems, Kluwer, N.Y, 1998 doi: 10.1007/978-1-4615-5575-9

[005] [6] M.I. Gil', On bounded input-bounded output stability of nonlinear retarded systems, Robust and Nonlinear Control 10 (2000), 1337-1344. doi: 10.1002/1099-1239(20001230)10:15<1337::AID-RNC543>3.0.CO;2-B | Zbl 0979.93107

[006] [7] M.I. Gil', Operator Functions and Localization of Spectra, Lecture Notes in Mathematics, Vol. 1830, Springer-Verlag, Berlin, 2003. doi: 10.1007/b93845 | Zbl 1032.47001

[007] [8] M.I. Gil', Absolute and input-to-state stabilities of nonautonomous systems with causal mappings, Dynamic Systems and Applications 18 (2009) 655-666. | Zbl 1185.34103

[008] [9] M.I. Gil', L²-absolute and input-to-state stabilities of equations with nonlinear causal mappings, Internat. J. Robust Nonlinear Control 19 (2) (2009), 151-167. doi: 10.1002/rnc.1305 | Zbl 1188.34096

[009] [10] M.I. Gil', Stability of vector functional differential equations: a survey, Quaestiones Mathematicae 35 (2012), 1-49. doi: 10.2989/16073606.2012.671261

[010] [11] M.I. Gil', Exponential stability of nonlinear neutral type systems, Archives of Control Sci 22 (2) (2012), 125-143. | Zbl 1270.93095

[011] [12] M.I. Gil', Estimates for fundamental solutions of neutral type functional differential equations, Int. J. Dynamical Systems and Differential Equations 4 (4) (2012), 255-273. doi: 10.1504/IJDSDE.2012.049904 | Zbl 1263.34114

[012] [13] V.L. Kharitonov, Lyapunov functionals and Lyapunov matrices for neutral type time delay systems: a single delay case, International Journal of Control 78 (2005), 783-800. doi: 10.1080/00207170500164837 | Zbl 1097.93027

[013] [14] V.B. Kolmanovskii and V.R. Nosov, Stability of Functional Differential Equations, Academic Press, London, 1986.

[014] [15] M. Krichman, E.D. Sontag and Y. Wang, Input-output-to-state stability, SIAM J. Control Optimization 39 (6) (2000), 1874-1928. doi: 10.1137/S0363012999365352 | Zbl 1005.93044

[015] [16] J.-J. Loiseau, M. Cardelli and X. Dusser, Neutral-type time-delay systems that are not formally stable are not BIBO stabilizable, IMA J. Math. Control Inform. 19 (2002), 217-227. doi: 10.1093/imamci/19.1_and_2.217 | Zbl 1001.93072

[016] [17] A.M. Ostrowski, Note on bounds for determinants with dominant principal diagonals, Proc. of AMS 3 (1952), 26-30. | Zbl 0046.01203

[017] [18] J. Partingtona and C. Bonnetb, H and BIBO stabilization of delay systems of neutral type, Systems Control Letters 52 (2004), 283-288. doi: 10.1016/j.sysconle.2003.09.014

[018] [19] R. Rakkiyappan and P. Balasubramaniam, LMI conditions for global asymptotic stability results for neutral-type neural networks with distributed time delays, Appl. Math. and Comput. 204 (2008), 317-324. doi: 10.1016/j.amc.2008.06.049 | Zbl 1168.34356

[019] [20] E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer-Verlag, New York, 1990. | Zbl 0703.93001