Stochastic diffrential equations on Banach spaces and their optimal feedback control
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 32 (2012), p. 87-109 / Harvested from The Polish Digital Mathematics Library

In this paper we consider stochastic differential equations on Banach spaces (not Hilbert). The system is semilinear and the principal operator generating a C₀-semigroup is perturbed by a class of bounded linear operators considered as feedback operators from an admissible set. We consider the corresponding family of measure valued functions and present sufficient conditions for weak compactness. Then we consider applications of this result to several interesting optimal feedback control problems. We present results on existence of optimal feedback operators.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:270218
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1138,
     title = {Stochastic diffrential equations on Banach spaces and their optimal feedback control},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {32},
     year = {2012},
     pages = {87-109},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1138}
}
 (éd.). Stochastic diffrential equations on Banach spaces and their optimal feedback control. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 32 (2012) pp. 87-109. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1138/

[000] [1] N.U. Ahmed, Semigroup Theory with Applications to Systems and Control, Pitman Research Notes in Mathematics series 246 (1999) Longman Scientific and Technical, U.K.

[001] [2] N.U. Ahmed, Generalized solutions of HJB equations applied to stochastic control on Hilbert space, Nonlinear Analysis 54 (2003) 495-523. doi: 10.1016/S0362-546X(03)00109-3 | Zbl 1018.93030

[002] [3] N.U. Ahmed, Optimal relaxed controls for infinite dimensional stochastic systems of Zakai type, SIAM J. Control and Optimization 34 (5) (1996) 1592-1615. doi: 10.1137/S0363012994269119 | Zbl 0861.93030

[003] [4] N.U. Ahmed, Optimal control of ∞-dimensional stochastic systems via generalized solutions of HJB equations, Discuss. Math. Differential Inclusions, Control and Optimization 21 (2001) 97-126. | Zbl 1013.93054

[004] [5] N.U. Ahmed and K.L. Teo, Optimal Control of Distributed Parameter Systems, North Holland, New York, Oxford, 1981.

[005] [6] L. Cesari, Optimization Theory and Applications, Springer-Verlag, 1983.

[006] [7] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992. | Zbl 0761.60052

[007] [8] N. Dnford and J.T. Schwartz, Linear Operators, Part 1, Inter Science Publishers, Inc., New York, 1958.

[008] [9] J. Diestel and J.J. Uhl Jr., Vector Measures, in: Mathematical surveys, Vol. 15, American Mathematical Society, Providence, RI, 1977.

[009] [10] H.O. Fattorini, Infinite Dimensional optimization and Control Theory, Encyclopedia of mathematics and its applications, 62, Cambridge University Press, 1999. | Zbl 0931.49001

[010] [11] F. Gozzi, E. Rouy and A. Swiech, Second order Hamilton-Jacobi equation in Hilbert spaces and stochastic boundary control, SIAM J. Control Optim. 38 (2000) 400-430. doi: 10.1137/S0363012997324909 | Zbl 0994.49019

[011] [12] B. Goldys and B. Maslowski, Ergodic Control of Semilinear Stochastic Equations and Hamilton-Jacobi Equations, preprint, 1998. | Zbl 0939.93043

[012] [13] P. Mattila and D. Mauldin, Measure and dimension functions: measurability and densities, Math. Proc. Camb. Phil. Soc. 121 (1997) 81-100. doi: 10.1017/S0305004196001089 | Zbl 0885.28005

[013] [14] K.R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York and London, 1967. | Zbl 0153.19101

[014] [15] A.I. Tulcea and C.I. Tulcea, Topics in the Theory of Lifting, Springer-Verlag, Berlin, Heidelberg, New York, 1969. | Zbl 0179.46303

[015] [16] A. Weron, On Weak second order and Gaussian random elements, Lecture Notes in Mathematics 526 (1976) 263-272, DOI: 10.1007/BFb0082336, Proceedings of the First International Conference on Probability in Banach Spaces, 20-26 July 1975, Oberwolfach. doi: 10.1007/BFb0082336

[016] [17] J. Motyl, Existence of solutions of functional stochastic inclusions, Dynamic Systems and Applications (DSA) 21 (2012) 331-338. | Zbl 1255.49031

[017] [18] M. Kozaryn, M.T. Malinowski, M. Michta and K.L. Ŝwiatek, On multivalued stochastic integral equations driven by a Wiener process in the plane, Dynamic Systems and Applications (DSA) 21 (2012) 293-318. | Zbl 1260.60131