The existence results for an abstract Cauchy problem involving a higher order differential inclusion with infinite delay in a Banach space are obtained. We use the concept of the existence family to express the mild solutions and impose the suitable conditions on the nonlinearity via the measure of noncompactness in order to apply the theory of condensing multimaps for the demonstration of our results. An application to some classes of partial differential equations is given.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1135, author = {Tran Dinh Ke and Valeri Obukhovskii and Ngai-Ching Wong and Jen-Chih Yao}, title = {An abstract Cauchy problem for higher order functional differential inclusions with infinite delay}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {31}, year = {2011}, pages = {199-229}, zbl = {1259.34051}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1135} }
Tran Dinh Ke; Valeri Obukhovskii; Ngai-Ching Wong; Jen-Chih Yao. An abstract Cauchy problem for higher order functional differential inclusions with infinite delay. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 31 (2011) pp. 199-229. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1135/
[000] [1] W. Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (3) (1987), 327-352. doi: 10.1007/BF02774144 | Zbl 0637.44001
[001] [2] W. Arendt, C.J.K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, 96. Birkhauser Verlag, Basel, 2001. | Zbl 0978.34001
[002] [3] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Reprint of the 1990 edition, Modern Birkhauser Classics, Birkhauser Boston, Inc., Boston, MA, 2009.
[003] [4] Yu. G. Borisovich, B.D. Gelman, A.D. Myshkis and V.V. Obukhovskii, Introduction to the Theory of Multivalued Maps and Differential Inclusions, 2nd edition, Librokom, Moscow, 2011 (in Russian). | Zbl 1126.34001
[004] [5] G. Da Prato and E. Sinestrari, Differential operators with nondense domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (2) (1987), 285-344. | Zbl 0652.34069
[005] [6] K. Deimling, Multivalued Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, 1. Walter de Gruyter, Berlin, 1992.
[006] [7] R. deLaubenfels, Integrated semigroups, C-semigroups and the abstract Cauchy problem, Semigroup Forum 41 (1) (1990), 83-95. doi: 10.1007/BF02573380 | Zbl 0717.47014
[007] [8] R. deLaubenfels, Entire solutions of the abstract Cauchy problem, Semigroup Forum 42 (1) (1991), 83-105. doi: 10.1007/BF02573409 | Zbl 0746.47018
[008] [9] R. deLaubenfels, Existence and uniqueness families for the abstract Cauchy problem, J. London Math. Soc. 44 (2) (1991), 310-338. doi: 10.1112/jlms/s2-44.2.310
[009] [10] R. deLaubenfels, Existence families, functional calculi and evolution equations, Lecture Notes in Mathematics, 1570. Springer-Verlag, Berlin, 1994. | Zbl 0811.47034
[010] [11] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000. | Zbl 0952.47036
[011] [12] H.O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, North-Holland Mathematics Studies, 108. Notas de Matematica [Mathematical Notes], 99. North-Holland Publishing Co., Amsterdam, 1985. | Zbl 0564.34063
[012] [13] E.P. Gatsori, L. Gorniewicz, S.K. Ntouyas and G.Y. Sficas, Existence results for semilinear functional differential inclusions with infinite delay, Fixed Point Theory 6 (1) (2005), 47-58. | Zbl 1079.34061
[013] [14] C. Gori, V. Obukhovskii, M. Ragni and P. Rubbioni, Existence and continuous dependence results for semilinear functional differential inclusions with infinite delay, Nonlinear Anal. 51 (5) (2002), Ser. A: Theory Methods, 765-782. | Zbl 1018.34076
[014] [15] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, 2nd edition, Topological Fixed Point Theory and Its Applications, 4. Springer, Dordrecht, 2006. | Zbl 1107.55001
[015] [16] J.K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1) (1978), 11-41. | Zbl 0383.34055
[016] [17] M. Hieber, Integrated semigroups and differential operators on spaces, Math. Ann. 291 (1) (1991), 1-16. doi: 10.1007/BF01445187
[017] [18] Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Vol. 1473, Springer-Verlag, Berlin-Heidelberg-New York, 1991. | Zbl 0732.34051
[018] [19] S. Hu and N.S. Papageorgiou, Handbook of multivalued analysis, Vol. I. Theory, Mathematics and its Applications, 419, Kluwer Academic Publishers, Dordrecht, 1997. | Zbl 0887.47001
[019] [20] C. Kaiser, Integrated semigroups and linear partial differential equations with delay, J. Math. Anal. Appl. 292 (2) (2004), 328-339. empty | Zbl 1057.34101
[020] [21] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications, 7, Walter de Gruyter, Berlin-New York, 2001. doi: 10.1515/9783110870893 | Zbl 0988.34001
[021] [22] H. Kellerman and M. Hieber, Integrated semigroups, J. Funct. Anal. 84 (1) (1989), 160-180. doi: 10.1016/0022-1236(89)90116-X | Zbl 0689.47014
[022] [23] M. Kisielewicz, Differential Inclusions and Optimal Control, Mathematics and its Applications (East European Series), 44. Kluwer Academic Publishers Group, Dordrecht; PWN--Polish Scientific Publishers, Warsaw, 1991.
[023] [24] S.G. Krein, Linear Differential Equations in Banach Space, Translations of Mathematical Monographs, Vol. 29. American Mathematical Society, Providence, R.I., 1971.
[024] [25] V. Lakshmikantham, L.Z. Wen and B.G. Zhang, Theory of Differential Equations With Unbounded Delay, Mathematics and its Applications, 298. Kluwer Academic Publishers Group, Dordrecht, 1994.
[025] [26] J. Liang and T.J. Xiao, Wellposedness results for certain classes of higher order abstract Cauchy problems connected with integrated semigroups, Semigroup Forum 56 (1) (1998), 84-103. doi: 10.1007/s00233-002-7007-1 | Zbl 0892.34054
[026] [27] Y.C. Liou, V. Obukhovskii and J.C. Yao, Controllability for a class of degenerate functional differential inclusions in a Banach space, Taiwanese Journal of Math. 12 (8) (2008), 2179-2200. | Zbl 1166.93005
[027] [28] B. Liu, Controllability of impulsive neutral functional differential inclusions with infinite delay, Nonlinear Anal. 60 (8) (2005), 1533-1552. doi: 10.1016/j.na.2004.11.022
[028] [29] I.V. Mel'nikova and A.I. Filinkov, Integrated semigroups and C-semigroups. Well-posedness and regularization of operator-differential problems, (Russian) Uspekhi Mat. Nauk 49 (6) (1994), 111-150; English translation in Russian Math. Surveys 49 (6) (1994), 115-155.
[029] [30] F. Neubrander, Well-posedness of higher order abstract Cauchy problems, Trans. Amer. Math. Soc. 295 (1) (1986), 257-290. doi: 10.1090/S0002-9947-1986-0831199-8 | Zbl 0589.34004
[030] [31] V. Obukhovskii and J.-C. Yao, On impulsive functional differential inclusions with Hille-Yosida operators in Banach spaces, Nonlinear Anal. 73 (6) (2010), 1715-1728. empty | Zbl 1214.34052
[031] [32] V. Obukhovskii and P. Zecca, On semilinear differential inclusions in Banach spaces with nondensely defined operators, J. Fixed Point Theory Appl. 9 (1) (2011), 85-100. doi: 10.1007/s11784-011-0042-3 | Zbl 1205.34076
[032] [33] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1 | Zbl 0516.47023
[033] [34] Y. Qin, Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors. Operator Theory: Advances and Applications, 184. Advances in Partial Differential Equations (Basel). Birkhauser Verlag, Basel, 2008.
[034] [35] H.R. Thieme, 'Integrated semigroups' and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl. 152 (2) (1990), 416-447. doi: 10.1016/0022-247X(90)90074-P
[035] [36] V.V. Vasil'ev, S.G. Krein and S.I. Piskarev, Operator semigroups, cosine operator functions, and linear differential equations, J. Soviet Math. 54 (4) (1991), 1042-1129. doi: 10.1007/BF01138948 | Zbl 0748.47038
[036] [37] T.-J. Xiao and J. Liang, The Cauchy Problem for Higher-Order Abstract Differential Equations, Lecture Notes in Mathematics, 1701. Springer-Verlag, Berlin, 1998. | Zbl 0915.34002
[037] [38] T. Xiao and J. Liang, Differential operators and C-wellposedness of complete second order abstract Cauchy problems, Pacific J. Math. 186 (1) (1998), 167-200. doi: 10.2140/pjm.1998.186.167 | Zbl 0943.34047
[038] [39] T.-J. Xiao and J. Liang, Higher order abstract Cauchy problems: their existence and uniqueness families, J. London Math. Soc. (2) 67 (1) (2003), 149-164. | Zbl 1073.34072