We prove that the generator of any uniformly bounded set-valued Nemytskij operator acting between generalized Hölder function metric spaces, with nonempty compact and convex values is an affine function with respect to the function variable.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1134, author = {Janusz Matkowski and Ma\l gorzata Wr\'obel}, title = {Uniformly bounded Nemytskij operators generated by set-valued functions between generalized H\"older function spaces}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {31}, year = {2011}, pages = {183-198}, zbl = {1264.47070}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1134} }
Janusz Matkowski; Małgorzata Wróbel. Uniformly bounded Nemytskij operators generated by set-valued functions between generalized Hölder function spaces. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 31 (2011) pp. 183-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1134/
[000] [1] J. Appell and P.P. Zabrejko, Nonlinear Superposition Operators, Cambridge University Press, 1990. doi:10.1017/CBO9780511897450 | Zbl 0701.47041
[001] [2] A. Azócar, J.A. Guerrero, J. Matkowski and N. Merentes, Uniformly continuous set-valued composition operators in the space of continuous functions of bounded variation in the sense of Wiener, Opuscula Math. 30 (2010), 53-60. | Zbl 1216.47090
[002] [3] V.V. Chistyakov, Lipschitzian superposition operators between spaces of functions of bounded generalized variation with weight, J. Appl. Anal. 6 (2000), 173-186. doi:10.1515/JAA.2000.173
[003] [4] J.A. Guerrero, H. Leiva, J. Matkowski and N. Merentes, Uniformly continuous composition operators in the space of bounded φ-variation functions, Nonlinear Anal. 72 (2010), 3119-3123. doi:10.1016/j.na.2009.11.051 | Zbl 1225.47078
[004] [5] J.J. Ludew, On Lipschitzian operators of substitution generated by set-valued functions, Opuscula Math. 27 (1) (2007), 13-24. | Zbl 1160.47047
[005] [6] J. Matkowski, Functional equations and Nemytskij operators, Funkc. Ekvacioj Ser. Int. 25 (1982), 127-132.
[006] [7] J. Matkowski, Lipschitzian composition operators in some function spaces, Nonlin. Anal. Theory Meth. Appl. 30 (2) (1997), 719-726. doi:10.1016/S0362-546X(96)00287-8
[007] [8] J. Matkowski, Remarks on Lipschitzian mappings and some fixed point theorems, Banach J. Math. Anal. 2 (2007), 237-244 (electronic), www.math-analysis.org. | Zbl 1146.47034
[008] [9] J. Matkowski, Uniformly continuous superposition operators in the spaces of differentiable functions and absolutely continuous functions, Internat. Ser. Numer. Math. 157 (2008), 155-155. | Zbl 1266.47082
[009] [10] J. Matkowski, Uniformly continuous superposition operators in the space of Hölder functions, J. Math. Anal. Appl. 359 (2009), 56-61. doi:10.1016/j.jmaa.2009.05.020 | Zbl 1173.47043
[010] [11] J. Matkowski, Uniformly continuous superposition operators in the spaces of bounded variation functions, Math. Nachr. 283 (7) (2010), 1060-1064. | Zbl 1235.47052
[011] [12] J. Matkowski, Uniformly bounded composition operators between general Lipschitz function normed spaces, (accepted), Top. Math. Nonl. Anal. | Zbl 1272.47070
[012] [13] J. Matkowski and J. Miś, On a charakterization of Lipschitzian operators of substitution in the space BV[a,b], Math. Nachr. 117 (1984), 155-159. doi:10.1002/mana.3211170111 | Zbl 0566.47033
[013] [14] K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Naukowe Politechniki Łódzkiej, Mat. 559, Rozprawy Naukowe 114, 1989.
[014] [15] A. Smajdor and W. Smajdor, Jensen equation and Nemytskii operator for set-valued functions, Rad. Math. 5 (1989), 311-320. | Zbl 0696.47057
[015] [16] W. Smajdor, Note on Jensen and Pexider functional equations, Demonstratio Math. 32 (1999), 363-376. | Zbl 0938.39026