Monotonic solutions for quadratic integral equations
Mieczysław Cichoń ; Mohamed M.A. Metwali
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 31 (2011), p. 157-171 / Harvested from The Polish Digital Mathematics Library

Using the Darbo fixed point theorem associated with the measure of noncompactness, we establish the existence of monotonic integrable solution on a half-line ℝ₊ for a nonlinear quadratic functional integral equation.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:271149
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1132,
     author = {Mieczys\l aw Cicho\'n and Mohamed M.A. Metwali},
     title = {Monotonic solutions for quadratic integral equations},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {31},
     year = {2011},
     pages = {157-171},
     zbl = {1254.45004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1132}
}
Mieczysław Cichoń; Mohamed M.A. Metwali. Monotonic solutions for quadratic integral equations. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 31 (2011) pp. 157-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1132/

[000] [1] G. Anichini and G. Conti, Existence of solutions of some quadratic integral equations, Opuscula Mathematica 28 (2008), 433-440. doi: 10.7151/dmdico.1132 | Zbl 1165.45003

[001] [2] J. Appell and P.P. Zabrejko, Continuity properties of the superposition operator, Preprint No. 131, Univ. Augsburg, 1986. | Zbl 0683.47045

[002] [3] I.K. Argyros, Quadratic equations and applications to Chandrasekhar's and related equations, Bull. Austral. Math. Soc. 32 (1985), 275-292. doi: 10.1017/S0004972700009953 | Zbl 0607.47063

[003] [4] J. Banaś, On the superposition operator and integrable solutions of some functional equations, Nonlin. Anal. Th. Meth. Appl. 12 (1988), 777-784. doi: 10.1016/0362-546X(88)90038-7

[004] [5] J. Banaś, Integrable solutions of Hammerstein and Urysohn integral equations, J. Autral. Math. Soc. 46 (1989), 61-68. doi: 10.1017/S1446788700030378 | Zbl 0666.45008

[005] [6] J. Banaś and A. Chlebowicz, On integrable solutions of a nonlinear Volterra integral equation under Carathéodory conditions, Bull. London Math. Soc. 41 (2009), 1073-1084. | Zbl 1191.47087

[006] [7] J. Banaś and W.G. El-Sayed, Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation, J. Math. Anal. Appl. 167 (1992), 133-151. doi: 10.1016/0022-247X(92)90241-5 | Zbl 0754.45008

[007] [8] J. Banaś and W.G. El-Sayed, Solvability of Functional and Integral Equations in some Classes of Integrable Functions, Politechnika Rzeszowska, Rzeszów, 1993.

[008] [9] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lect. Notes in Math. 60, M. Dekker, New York-Basel, 1980. | Zbl 0441.47056

[009] [10] J. Banaś, J. Rocha and K.B. Sadarangani, Solvability of a nonlinear integral equation of Volterra type, J. Comp. Appl. Math. 157 (2003), 31-48. doi: 10.1016/S0377-0427(03)00373-X | Zbl 1026.45006

[010] [11] J. Banaś and B. Rzepka, On existence and asymptotic stability of a nonlinear integral equation, J. Math. Anal. Appl. 284 (2003), 165-173. empty | Zbl 1029.45003

[011] [12] J. Banaś and B. Rzepka, Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl. 332 (2007), 1371-1379. doi: 10.1016/j.jmaa.2006.11.008 | Zbl 1123.45001

[012] [13] J. Banaś and B. Rzepka, Nondecreasing solutions of a quadratic singular Volterra integral equation, Math. Comp. Model. 49 (2009), 488-496. doi: 10.1016/j.mcm.2007.10.021 | Zbl 1165.45301

[013] [14] J. Banaś, M. Lecko and W.G. El-Sayed, Existence theorems of some quadratic integral equations, J. Math. Anal. Appl. 222 (1998), 276-285. doi: 10.1006/jmaa.1998.5941 | Zbl 0913.45001

[014] [15] J. Banaś and T. Zając, Solvability of a functional integral equation of fractional order in the class of functions having limits at infinity, Nonlin. Anal. Th. Meth. Appl. 71 (2009), 5491-5500. doi: 10.1016/j.na.2009.04.037 | Zbl 1181.45010

[015] [16] J. Banaś and L. Olszowy, Measures of noncompactness related to monotonicity, Comment. Math. 41 (2001), 13-23. | Zbl 0999.47041

[016] [17] J. Caballero, A.B. Mingarelli and K. Sadarangani, Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer, Electr. J. Differ. Equat. 57 (2006), 1-11. | Zbl 1113.45004

[017] [18] S. Chandrasekhar, Radiative Transfer, Dover Publications, New York, 1960.

[018] [19] G. Darbo, Punti uniti in trasformazioni a codominio noncompatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92. | Zbl 0064.35704

[019] [20] M.A. Darwish, On solvability of some quadratic functional-integral equation in Banach algebra, Commun. Appl. Anal. 11 (2007), 441-450. | Zbl 1137.45004

[020] [21] M.A. Darwish and J. Henderson, Existence and asymptotic stability of solutions of a perturbed quadratic fractional integral equations, Fract. Calculus Appl. Anal. 12 (2009), 71-86. | Zbl 1181.45014

[021] [22] M.A. Darwish and S.K. Ntouyas, Monotonic solutions of a perturbed quadratic fractional integral equation, Nonlin. Anal. Th. Meth. Appl. 71 (2009), 5513-5521. doi: 10.1016/j.na.2009.04.041 | Zbl 1177.45004

[022] [23] N. Dunford and J. Schwartz, Linear Operators I, Int. Publ., Leyden, 1963.

[023] [24] W.G. El-Sayed and B. Rzepka, Nondecreasing solutions of a quadratic integral equation of Urysohn type, Comp. Math. Appl. 51 (2006), 1065-1074. doi: 10.1016/j.camwa.2005.08.033 | Zbl 1134.45004

[024] [25] S. Hu, M. Khavani and W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Analysis 34 (1989), 261-266. doi: 10.1080/00036818908839899 | Zbl 0697.45004

[025] [26] M.A. Krasnosel'skii, P.P. Zabrejko, J.I. Pustyl'nik and P.E. Sobolevskii, Integral Operators in Spaces of Summable Functions, Noordhoff, Leyden, 1976.

[026] [27] M. Väth, A general theorem on continuity and compactness of the Urysohn operator, J. Integral Equations Appl. 8 (1996), 379-389. doi: 10.1216/jiea/1181075958 | Zbl 0872.45010

[027] [28] M. Väth, Continuity of single- and multivalued superposition operators in generalized ideal spaces of measurable functions, Nonlin. Funct. Anal. Appl. 11 (2006), 607-646. | Zbl 1119.47060

[028] [29] M. Väth, Volterra and Integral Equations of Vector Functions, Marcel Dekker, New York-Basel, 2000.

[029] [30] P.P. Zabrejko, A.I. Koshlev, M.A. Krasnosel'skii, S.G. Mikhlin, L.S. Rakovshchik and V.J. Stecenko, Integral Equations, Noordhoff, Leyden, 1975.