Locally admissible multi-valued maps
Mirosław Ślosarski
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 31 (2011), p. 115-132 / Harvested from The Polish Digital Mathematics Library

In this paper we generalize the class of admissible mappings as due by L. Górniewicz in 1976. Namely we define the notion of locally admissible mappings. Some properties and applications to the fixed point problem are presented.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:271162
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1130,
     author = {Miros\l aw \'Slosarski},
     title = {Locally admissible multi-valued maps},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {31},
     year = {2011},
     pages = {115-132},
     zbl = {1264.55003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1130}
}
Mirosław Ślosarski. Locally admissible multi-valued maps. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 31 (2011) pp. 115-132. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1130/

[000] [1] G.P. Agarwal and D. O'Regan, A note on the Lefschetz fixed point theorem for admissible spaces, Bull. Korean Math. Soc. 42 (2) (2005), 307-313. doi: 10.4134/BKMS.2005.42.2.307

[001] [2] J. Andres and L. Górniewicz, Topological principles for boundary value problems, Kluwer, 2003. | Zbl 1029.55002

[002] [3] S.A. Bogatyi, Approximative and fundamental retracts, Math. USSR Sb. 22 (1974), 91-103. doi: 10.1070/SM1974v022n01ABEH001687 | Zbl 0301.54042

[003] [4] S. Eilenberg and D. Montomery, Fixed points theorems for multi-valued transformations, Amer. J. Math. 58 (1946), 214-222. doi: 10.2307/2371832

[004] [5] L. Górniewicz, Topological methods in fixed point theory of multi-valued mappings, Springer, 2006. | Zbl 1107.55001

[005] [6] L. Górniewicz and D. Rozpłoch-Nowakowska, The Lefschetz fixed point theory for morphisms in topological vector spaces, Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center 20 (2002), 315-333. doi: 10.7151/dmdico.1130 | Zbl 1031.55002

[006] [7] L. Górniewicz and M. Ślosarski, Once more on the Lefschetz fixed point theorem, Bull. Polish Acad. Sci. Math. 55 (2007), 161-170. | Zbl 1122.55002

[007] [8] L. Górniewicz and M. Ślosarski, Fixed points of mappings in Klee admissible spaces, Control and Cybernetics 36 (3) (2007), 825-832. doi: 10.4064/ba55-2-7 | Zbl 1194.47062

[008] [9] A. Granas, Generalizing the Hopf- Lefschetz fixed point theorem for non-compact ANR's, in: Symp. Inf. Dim. Topol., Baton-Rouge, 1967.

[009] [10] A. Granas and J. Dugundji, Fixed Point Theory, Springer, 2003.

[010] [11] J. Leray and J. Schauder, Topologie et équations fonctionnelles, Ann. Sci. Ecole Norm. Sup. 51 (1934). | Zbl 60.0322.02

[011] [12] H.O. Peitgen, On the Lefschetz number for iterates of continuous mappings, Proc. AMS 54 (1976), 441-444. | Zbl 0316.55006

[012] [13] R. Skiba and M. Ślosarski, On a generalization of absolute neighborhood retracts, Topology and its Applications 156 (2009), 697-709. doi: 10.1016/j.topol.2008.09.007 | Zbl 1166.54008

[013] [14] M. Ślosarski, On a generalization of approximative absolute neighborhood retracts, Fixed Point Theory 10 (2) (2009), 329-346. | Zbl 1185.55002

[014] [15] M. Ślosarski, Fixed points of multivalued mappings in Hausdorff topological spaces, Nonlinear Analysis Forum 13 (1) (2008), 39-48. | Zbl 1295.54091