Integro-differential equations on time scales with Henstock-Kurzweil delta integrals
Aneta Sikorska-Nowak
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 31 (2011), p. 71-90 / Harvested from The Polish Digital Mathematics Library

In this paper we prove existence theorems for integro - differential equations xΔ(t)=f(t,x(t),tk(t,s,x(s))Δs), t ∈ Iₐ = [0,a] ∩ T, a ∈ R₊, x(0) = x₀ where T denotes a time scale (nonempty closed subset of real numbers R), Iₐ is a time scale interval. Functions f,k are Carathéodory functions with values in a Banach space E and the integral is taken in the sense of Henstock-Kurzweil delta integral, which generalizes the Henstock-Kurzweil integral. Additionally, functions f and k satisfy some boundary conditions and conditions expressed in terms of measures of noncompactness. Moreover, we prove an Ambrosetti type lemma on a time scale.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:271148
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1128,
     author = {Aneta Sikorska-Nowak},
     title = {Integro-differential equations on time scales with Henstock-Kurzweil delta integrals},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {31},
     year = {2011},
     pages = {71-90},
     zbl = {1257.34076},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1128}
}
Aneta Sikorska-Nowak. Integro-differential equations on time scales with Henstock-Kurzweil delta integrals. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 31 (2011) pp. 71-90. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1128/

[000] [1] R.P. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Result Math. 35 (1999), 3-22. | Zbl 0927.39003

[001] [2] R.P. Agarwal, M. Bohner and A. Peterson, Inequalities on time scales, a survey, Math. Inequal. Appl. 4 (4) (2001), 535-557. | Zbl 1021.34005

[002] [3] R.P. Agarwal and D. O'Regan, Difference equations in Banach spaces, J. Austral. Math. Soc. (A) 64 (1998), 277-284. doi: 10.1017/S1446788700001762

[003] [4] E. Akin-Bohner, M. Bohner and F. Akin, Pachpate inequalities on time scale, J. Inequal. Pure and Appl. Math. 6 (1) Art. 6, 2005. | Zbl 1086.34014

[004] [5] A. Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Univ. Padova 39 (1967), 349-361.

[005] [6] B. Aulbach and S. Hilger, Linear dynamic processes with inhomogeneous time scale, Nonlinear Dynamics and Quantum Dynamical Systems, Akademie Verlag, Berlin, 1990.

[006] [7] J. Banaś and K. Goebel, Measures of Noncompactness in Banach spaces, Lecture Notes in Pure and Appl. Math. 60 Dekker, New York and Basel, 1980.

[007] [8] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkäuser, 2001. | Zbl 0978.39001

[008] [9] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkäuser, Boston, 2003. doi: 10.1007/978-0-8176-8230-9 | Zbl 1025.34001

[009] [10] A. Cabada and D.R. Vivero, Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue integral; applications of the calculus of Δ-antiderivatives, Math. Comp. Modell. 43 (2006) 194-207. doi: 10.1016/j.mcm.2005.09.028 | Zbl 1092.39017

[010] [11] S.S. Cao, The Henstock integral for Banach valued functions, SEA Bull. Math. 16 (1992), 36-40.

[011] [12] M. Cichoń, On integrals of vector-valued functions on time scales, Commun. Math. Anal. 11 (1) (2011), 94-110. | Zbl 1205.26050

[012] [13] M. Cichoń, I. Kubiaczyk, A. Sikorska-Nowak and A. Yantir, Weak solutions for the dynamic Cauchy problem in Banach spaces, Nonlin. Anal. Th. Meth. Appl. 71 (2009), 2936-2943. doi: 10.1016/j.na.2009.01.175 | Zbl 1198.34192

[013] [14] C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 1991, MR 92h:45001.

[014] [15] L. Erbe and A. Peterson, Green's functions and comparison theorems for differential equations on measure chains, Dynam. Contin. Discrete Impuls. Systems 6 (1) (1999), 121-137. | Zbl 0938.34027

[015] [16] D. Franco, Green's functions and comparison results for impulsive integro-differential equations, Nonlin. Anal. Th. Meth. Appl. 47 (2001), 5723-5728. doi: 10.1016/S0362-546X(01)00674-5 | Zbl 1042.45504

[016] [17] D. Guo, V. Lakshmikantham and X. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers, Dordrecht, 1996. | Zbl 0866.45004

[017] [18] D. Guo, Initial value problems for second-order integro-differential equations in Banach spaces, Nonlin. Anal. Th. Meth. Appl. 37 (1999), 289-300. doi: 10.1016/S0362-546X(98)00047-9

[018] [19] D. Guo and X. Liu, Extremal solutions of nonlinear impulsive integro-differential equations in Banach spaces, J. Math. Anal. Appl. 177 (1993), 538-553. doi: 10.1006/jmaa.1993.1276

[019] [20] G.Sh. Guseinov, Integration on time scales, J. Math. Anal. Appl. 285 (2003), 107-127. doi: 10.1016/S0022-247X(03)00361-5 | Zbl 1039.26007

[020] [21] R. Henstock, The General Theory of Integration, Oxford Math. Monographs, Clarendon Press, Oxford, 1991. | Zbl 0745.26006

[021] [22] S. Hilger, Ein Maβkettenkalkül mit Anvendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universität at Würzburg, Germany, 1988. | Zbl 0695.34001

[022] [23] S. Hilger, Analysis on measure chains - a unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18-56. | Zbl 0722.39001

[023] [24] B. Kaymakcalan, V. Lakshmikantham and S. Sivasundaram, Dynamical Systems on Measure Chains, Kluwer Akademic Publishers, Dordrecht, 1996. | Zbl 0869.34039

[024] [25] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2001. | Zbl 0986.05001

[025] [26] V.B. Kolmanovskii, E. Castellanos-Velasco and J.A. Torres-Munoz, A survey: stability and boundedness of Volterra difference equations, Nonlin. Anal. Th. Meth. Appl. 53 (2003), 669-681. doi: 10.1016/S0362-546X(02)00272-9 | Zbl 1031.39005

[026] [27] I. Kubiaczyk, On the existence of solutions of differential equations in Banach spaces, Bull. Polish Acad. Sci. Math. 33 (1985), 607-614. | Zbl 0607.34055

[027] [27a] I. Kubiaczyk and A. Sikorska-Nowak, Existence of solutions of the dynamic Cauchy problem of infinite time scale intervals, Discuss. Math. Differ. Incl. 29 (2009), 113-126. doi: 10.7151/dmdico.1108 | Zbl 1198.34197

[028] [28] V. Lakshmikantham, S. Sivasundaram and B. Kaymarkcalan, Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Dordrecht, 1996.

[029] [29] P.Y. Lee, Lanzhou Lectures on Henstock Integration, Ser. Real Anal. 2, World Sci., Singapore, 1989.

[030] [30] L. Liu, C.Wu and F. Guo, A unique solution of initial value problems for first order impulsive integro-differential equations of mixed type in Banach spaces, J. Math. Anal. Appl. 275 (2002), 369-385. doi: 10.1016/S0022-247X(02)00366-9 | Zbl 1014.45007

[031] [31] X. Liu and D. Guo, Initial value problems for first order impulsive integro-differential equations in Banach spaces, Comm. Appl. Nonlinear Anal. 2 (1995), 65-83. | Zbl 0858.34068

[032] [32] H. Lu, Extremal solutions of nonlinear first order impulsive integro-differential equations in Banach spaces, Indian J. Pure Appl. Math. 30 (1999), 1181-1197. | Zbl 0943.45004

[033] [33] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlin. Anal. Th. Meth. Appl. 4 (1980), 985-999. doi: 10.1016/0362-546X(80)90010-3

[034] [34] A. Peterson and B. Thompson, Henstock-Kurzweil delta and nabla integrals, J. Math. Anal. Appl. 323 (2006), 162-178. doi: 10.1016/j.jmaa.2005.10.025 | Zbl 1110.26011

[035] [35] B.N. Sadovskii, Limit-compact and condesing operators, Russian Math. Surveys 27 (1972), 86-144. doi: 10.1070/RM1972v027n01ABEH001364

[036] [36] S. Schwabik, Generalized Ordinary Differential Equations, Word Scientic, Singapore, 1992. | Zbl 0781.34003

[037] [37] A.P. Solodov, On condition of differentiability almost everywhere for absolutely continuous Banach-valued function, Moscow Univ. Math. Bull. 54 (1999), 29-32.

[038] [38] G. Song, Initial value problems for systems of integrodifferential equations in Banach spaces, J. Math. Anal. Appl. 264 (2001), 68-75. doi: 10.1006/jmaa.2001.7630

[039] [39] V. Spedding, Taming Nature's Numbers, New Scientist, July 19, 2003, 28-31.

[040] [40] S. Szufla, Measure of noncompactness and ordinary differential equations in Banach spaces, Bull. Acad. Poland Sci. Math. 19 (1971), 831-835. | Zbl 0218.46016

[041] [41] C.C. Tisdell and A. Zaidi, Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling, Nonlin. Anal. Th. Meth. Appl. 68 (2008), 3504-3524. doi: 10.1016/j.na.2007.03.043 | Zbl 1151.34005

[042] [42] Y. Xing, M. Han and G. Zheng, Initial value problem for first-order integro-differential equation of Volterra type on time scales, Nonlin. Anal. Th. Meth. Appl. 60 (2005), 429-442. | Zbl 1065.45005

[043] [43] Y. Xing, W. Ding and M. Han, Periodic boundary value problems of integro-differential equation of Volterra type on time scales, Nonlin. Anal. Th. Meth. Appl. 68 (2008), 127-138. doi: 10.1016/j.na.2006.10.036 | Zbl 1130.45009

[044] [44] H. Xu and J.J. Nieto, Extremal solutions of a class of nonlinear integro-differential equations in Banach spaces, Proc. Amer. Math. Soc. 125 (1997), 2605-2614. doi: 10.1090/S0002-9939-97-04149-X | Zbl 0888.45007

[045] [45] S. Zhang, The unique existence of periodic solutions of linear Volterra difference equations, J. Math. Anal. Appl. 193 (1995), 419-430. doi: 10.1006/jmaa.1995.1244 | Zbl 0871.39003