Controllability for impulsive semilinear functional differential inclusions with a non-compact evolution operator
Irene Benedetti ; Valeri Obukhovskii ; Pietro Zecca
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 31 (2011), p. 39-69 / Harvested from The Polish Digital Mathematics Library

We study a controllability problem for a system governed by a semilinear functional differential inclusion in a Banach space in the presence of impulse effects and delay. Assuming a regularity of the multivalued non-linearity in terms of the Hausdorff measure of noncompactness we do not require the compactness of the evolution operator generated by the linear part of inclusion. We find existence results for mild solutions of this problem under various growth conditions on the nonlinear part and on the jump functions. As example, we consider the controllability of an impulsive system governed by a wave equation with delayed feedback.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:271185
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1127,
     author = {Irene Benedetti and Valeri Obukhovskii and Pietro Zecca},
     title = {Controllability for impulsive semilinear functional differential inclusions with a non-compact evolution operator},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {31},
     year = {2011},
     pages = {39-69},
     zbl = {1264.93022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1127}
}
Irene Benedetti; Valeri Obukhovskii; Pietro Zecca. Controllability for impulsive semilinear functional differential inclusions with a non-compact evolution operator. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 31 (2011) pp. 39-69. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1127/

[000] [1] N. Abada, M. Benchohra, H. Hammouche and A. Ouahab, Controllability of impulsive semilinear functional inclusions with finite delay in Fréchet spaces, Discuss. Math. Differ. Incl. Control Optim. 27 (2) (2007), 329-347. doi: 10.7151/dmdico.1088 | Zbl 1145.34047

[001] [2] N. Abada, M. Benchohra and H. Hammouche, Existence and controllability results for impulsive partial functional differential inclusions, Nonlinear Analysis T.M.A. 69 (2008), 2892-2909. empty | Zbl 1160.34068

[002] [3] K. Balachandran and J.P. Dauer, Controllability of nonlinear systems in Banach spaces: a survey, J. Optim. Theory Appl. 115 (1) (2002), 7-28. doi: 10.1023/A:1019668728098 | Zbl 1023.93010

[003] [4] M. Benchora, L. Górniewicz, S.K. Ntouyas and A. Ouahab, Controllability results for impulsive differential inclusions, Reports on Mathematical Physics 54 (2) (2004), 211-228. doi: 10.1016/S0034-4877(04)80015-6 | Zbl 1130.93310

[004] [5] M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusions, Contemporary Mathematics and Its Applications, 2. Hindawi Publishing Corporation, New York, 2006. doi: 10.1155/9789775945501 | Zbl 1130.34003

[005] [6] I. Benedetti, An existence result for impulsive functional differential inclusions in Banach spaces, Discuss. Math. Diff. Incl. Contr. Optim. 24 (2004), 13-30. doi: 10.7151/dmdico.1049 | Zbl 1071.34087

[006] [7] I. Benedetti and P. Rubbioni, Existence of solutions on compact and non-compact intervals for semilinear impulsive differential inclusions with delay, Topol. Methods Nonlinear Anal. 32 (2) (2008), 227-245. | Zbl 1189.34125

[007] [8] T. Cardinali and P. Rubbioni, On the existence of mild solutions of semilinear evolution differential inclusions, J. Math. Anal. Appl. 308 (2) (2005), 620-635. doi: 10.1016/j.jmaa.2004.11.049 | Zbl 1083.34046

[008] [9] T. Cardinali and P. Rubbioni, Mild solutions for impulsive semilinear evolution differential inclusions, J. Appl. Funct. Anal. 1 (3) (2006), 303-325. | Zbl 1109.34043

[009] [10] T. Cardinali and P. Rubbioni, Impulsive semilinear differential inclusions: topological structure of the solutions set and solutions on non compact domains, Nonlinear Anal. T.M.A. (in press). | Zbl 1147.34045

[010] [11] Y.K. Chang, Controllability of impulsive functional differential inclusions with infinite delay in Banach spaces, J. Appl. Math. Comput. 25 (1-2) (2007), 137-154. doi: 10.1007/BF02832343 | Zbl 1143.34050

[011] [12] K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Text in Mathematics, 194, Springer Verlag, New York, 2000. | Zbl 0952.47036

[012] [13] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Ser. Nonlinear Anal. Appl. 7, Walter de Gruyter, Berlin-New York, 2001. doi: 10.1515/9783110870893 | Zbl 0988.34001

[013] [14] S.G. Krein, Linear Differential Equations in Banach Spaces, Amer. Math. Soc., Providence, 1971.

[014] [15] W. Kryszewski and S. Plaskacz, Periodic solutions to impulsive differential inclusions with constraints, Nonlinear Anal. 65 (9) (2006), 1794-1804. empty | Zbl 1107.34004

[015] [16] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, Series in Modern Applied Math., 6, World Scientific Publ. Co., Inc., Teaneck, 1989. | Zbl 0719.34002

[016] [17] B. Liu, Controllability of impulsive neutral functional differential inclusions with infinite delay, Nonlinear Anal. 60 (8) (2005), 1533-1552. doi: 10.1016/j.na.2004.11.022

[017] [18] V. Obukhovski and P. Zecca, Controllability for systems governed by semilinear differential inclusions in a Banach space with a non-compact semigroup, Nonlinear Anal. 70 (9) (2009), 3424-3436. doi: 10.1016/j.na.2008.05.009 | Zbl 1157.93006

[018] [19] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1 | Zbl 0516.47023

[019] [120] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific series on Nonlinear Science, Series A: Monographs and Treatises, 14, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. | Zbl 0837.34003

[020] [121] R. Triggiani, A note on the lack of exact controllability for mild solutions in Banach spaces, SIAM J. Control Optim. 15 (3) (1977), 407-411. doi: 10.1137/0315028 | Zbl 0354.93014

[021] [122] R. Triggiani, Addendum: 'A note on the lack of exact controllability for mild solutions in Banach spaces', SIAM J. Control Optim. 18 (1) (1980), 98-99. doi: 10.1137/0318007 | Zbl 0426.93013

[022] [123] W. Zhang and M. Fan, Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Math. Comput. Modelling 39 (4-5) (2004), 479-493. doi: 10.1016/S0895-7177(04)90519-5 | Zbl 1065.92066