Necessary conditions for linear noncooperative N-player delta differential games on time scales
Natália Martins ; Delfim F.M. Torres
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 31 (2011), p. 23-37 / Harvested from The Polish Digital Mathematics Library

We present necessary conditions for linear noncooperative N-player delta dynamic games on an arbitrary time scale. Necessary conditions for an open-loop Nash-equilibrium and for a memoryless perfect state Nash-equilibrium are proved.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:271165
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1126,
     author = {Nat\'alia Martins and Delfim F.M. Torres},
     title = {Necessary conditions for linear noncooperative N-player delta differential games on time scales},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {31},
     year = {2011},
     pages = {23-37},
     zbl = {1258.49064},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1126}
}
Natália Martins; Delfim F.M. Torres. Necessary conditions for linear noncooperative N-player delta differential games on time scales. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 31 (2011) pp. 23-37. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1126/

[000] [1] H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati equations. In control and systems theory, Systems & Control: Foundations & Applications, Birkhäuser Verlag, Basel, 2003. | Zbl 1027.93001

[001] [2] Z. Bartosiewicz and E. Pawluszewicz, Realizations of linear control systems on times scales, Control and Cybernetics 35 (4) (2006), 769-786. | Zbl 1133.93033

[002] [3] M. Bohner and A. Peterson, Dynamic equations on time scales, An introduction with applications, Birkhäuser Boston, Inc., Boston, MA, 2001. | Zbl 0978.39001

[003] [4] M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-0-8176-8230-9 | Zbl 1025.34001

[004] [5] R.A.C. Ferreira and D.F.M. Torres, Remarks on the calculus of variations on time scales, Int. J. Ecol. Econ. Stat. 9 F07 (2007), 65-73.

[005] [6] R.A.C. Ferreira and D.F.M. Torres, Higher-order calculus of variations on time scales, Mathematical control theory and finance, (Springer, Berlin, 2008), 149-159. | Zbl 1191.49017

[006] [7] R.A.C. Ferreira and D.F.M. Torres, Necessary optimality conditions for the calculus of variations on time scales, arXiv:0704.0656.

[007] [8] S. Hilger, Ein Ma{ßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universitäat Würzburg, 1988. | Zbl 0695.34001

[008] [9] S. Hilger, Differential and difference calculus- unified! Proceedings of the Second World Congress on Nonlinear Analysts, Part 5 (Athens, 1996). Nonlinear Analysis 30 (5) (1997), 2683-2694. doi: 10.1016/S0362-546X(96)00204-0

[009] [10] G. Jank, Introduction to non-cooperative dynamical game theory, University of Aveiro, 2007 (personal notes).

[010] [11] G. Leitmann, Cooperative and non-cooperative many players differential games, Course held at the Department of Automation and Information, July 1973. International Centre for Mechanical Sciences, Courses and Lectures No. 190, Wien - New York: Springer-Verlag, 1974. | Zbl 0358.90085

[011] [12] L.S. Pontryagin, V.G. Boltyanskij, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes, Translated from Russian by K.N. Trirogoff; edited by L.W. Neustadt, Interscience Publishers John Wiley & Sons, Inc., New York-London, 1962. | Zbl 0102.32001