P-order necessary and sufficient conditions for optimality in singular calculus of variations
Agnieszka Prusińska ; Alexey Tret'yakov
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 30 (2010), p. 269-279 / Harvested from The Polish Digital Mathematics Library

This paper is devoted to singular calculus of variations problems with constraint functional not regular at the solution point in the sense that the first derivative is not surjective. In the first part of the paper we pursue an approach based on the constructions of the p-regularity theory. For p-regular calculus of variations problem we formulate and prove necessary and sufficient conditions for optimality in singular case and illustrate our results by classical example of calculus of variations problem.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:271182
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1124,
     author = {Agnieszka Prusi\'nska and Alexey Tret'yakov},
     title = {P-order necessary and sufficient conditions for optimality in singular calculus of variations},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {30},
     year = {2010},
     pages = {269-279},
     zbl = {1237.49027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1124}
}
Agnieszka Prusińska; Alexey Tret'yakov. P-order necessary and sufficient conditions for optimality in singular calculus of variations. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 30 (2010) pp. 269-279. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1124/

[000] [1] V.M. Alexeev, V.M. Tihomirov and S.V. Fomin, Optimal Control, (Consultants Bureau, New York, 1987). Translated from Russian by V.M. Volosov.

[001] [2] O.A. Brezhneva and A.A. Tret'yakov, Optimality conditions for degenerate extremum problems with equality constraints, SIAM J. Contr. Optim. 42 (2003), 729-745. doi: 10.1137/S0363012901388488 | Zbl 1037.49025

[002] [3] A.F. Izmailov and A.A. Tret'yakov, Factor-Analysis of Non-Linear Mapping (Nauka, Moscow, Fizmatlit Publishing Company, 1994).

[003] [4] K.N. Belash and A.A. Tret'yakov, Methods for solving degenerate problems, USSR Comput. Math. and Math. Phys. 28 (1988), 90-94. doi: 10.1016/0041-5553(88)90116-4

[004] [5] A.A. Tret'yakov, Necessary and Sufficient Conditions for Optimality of p-th Order, USSR Comput. Math. and Math. Phys. 24 (1984), 123-127. doi: 10.1016/0041-5553(84)90132-0

[005] [6] J. Glazunov, Variational methods for solving differential equations, Wydawnictwo Politechniki Gdańskiej, Gdańsk 2000 (in Polish)