Error estimates for the finite element discretization of semi-infinite elliptic optimal control problems
Pedro Merino ; Ira Neitzel ; Fredi Tröltzsch
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 30 (2010), p. 221-236 / Harvested from The Polish Digital Mathematics Library

In this paper we derive a priori error estimates for linear-quadratic elliptic optimal control problems with finite dimensional control space and state constraints in the whole domain, which can be written as semi-infinite optimization problems. Numerical experiments are conducted to ilustrate our theory.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:271164
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1121,
     author = {Pedro Merino and Ira Neitzel and Fredi Tr\"oltzsch},
     title = {Error estimates for the finite element discretization of semi-infinite elliptic optimal control problems},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {30},
     year = {2010},
     pages = {221-236},
     zbl = {1237.49039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1121}
}
Pedro Merino; Ira Neitzel; Fredi Tröltzsch. Error estimates for the finite element discretization of semi-infinite elliptic optimal control problems. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 30 (2010) pp. 221-236. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1121/

[000] [1] N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl. 23 (2002), 201-229. doi: 10.1023/A:1020576801966 | Zbl 1033.65044

[001] [2] F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems (Springer, New York, 2000). | Zbl 0966.49001

[002] [3] E. Casas, Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems, Advances in Computational Mathematics 26 (2007), 137-153. doi: 10.1007/s10444-004-4142-0 | Zbl 1118.65069

[003] [4] E. Casas and M. Mateos, Error estimates for the numerical approximation of Neumann control problems, Comput. Optim. Appl. 39 (2008), 265-295. doi: 10.1007/s10589-007-9056-6 | Zbl 1191.49030

[004] [5] P.G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978). | Zbl 0383.65058

[005] [6] K. Deckelnick and M. Hinze, Convergence of a finite element approximation to a state constrained elliptic control problem, SIAM J. Numer. Anal. 45 (2007), 1937-1953. | Zbl 1154.65055

[006] [7] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, 3rd edition, 1998). | Zbl 1042.35002

[007] [8] P. Grisvard, Elliptic Problems in Nonsmooth Domains (Pitman, Boston, 1985). | Zbl 0695.35060

[008] [9] G. Gramlich, R. Hettich and E.W. Sachs, Local convergence of SQP methods in semi-infinite programming, SIAM J. Optim. 5 (1995), 641-658. | Zbl 0840.65056

[009] [10] M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case, J. Comput. Optim. Appl. 30 (2005), 45-63. doi: 10.1137/060652361 | Zbl 1074.65069

[010] [11] M. Huth and R. Tichatschke, A hybrid method for semi-infinite programming problems, Operations research, Proc. 14th Symp. Ulm/FRG 1989, Methods Oper. Res. 62 (1990), 79-90.

[011] [12] P. Merino, F. Tröltzsch and B. Vexler, Error Estimates for the Finite Element Approximation of a Semilinear Elliptic Control Problem with State Constraints and Finite Dimensional Control Space, ESAIM:M2AN 44 (1) (2010), 167-188. | Zbl 1191.65076

[012] [13] C. Meyer, Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints, Control Cybern. 37 (2008), 51-85. | Zbl 1170.65055

[013] [14] C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control and Optimization 43 (2004), 970-985. | Zbl 1071.49023

[014] [15] C. Meyer, U. Prüfert and F. Tröltzsch, On two numerical methods for state-constrained elliptic control problems, Optimization Methods and Software 22 (6) (2007), 871-899. | Zbl 1172.49022

[015] [16] R. Rannacher and B. Vexler, A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements, SIAM Control Optim. 44 (2005), 1844-1863. | Zbl 1113.65102

[016] [17] R. Reemtsen and J.-J. Rückmann (Eds), Semi-Infinite Programming (Kluwer Academic Publishers, Boston, 1998). doi: 10.1007/978-1-4757-2868-2

[017] [18] A. R{ösch, Error estimates for linear-quadratic control problems with control constraints, Optimization Methods and Software 21 (1) (2006), 121-134. doi: 10.1080/10556780500094945 | Zbl 1085.49042

[018] [19] G. Still, Discretization in semi-infinite programming: the rate of convergence, Mathematical Programming. A Publication of the Mathematical Programming Society 91 (1) (A) (2001), 53-69. | Zbl 1051.90023

[019] [20] G. Still, Generalized semi-infinite programming: Numerical aspects, Optimization 49 (3) (2001), 223-242. | Zbl 1039.90083

[020] [21] F. Guerra Vázquez, J.-J. Rückmann, O. Stein and G. Still, Generalized semi-infinite programming: a tutorial, J. Comput. Appl. Math. 217 (2008), 394-419. doi: 10.1016/j.cam.2007.02.012 | Zbl 1190.90248