For a problem of optimal discrete control with a discrete control set composed of vertices of an n-dimensional permutohedron, a fully polynomial-time approximation scheme is proposed.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1119, author = {Stanis\l aw Gawiejnowicz and Wies\l aw Kurc and Lidia Pankowska}, title = {Solving a permutation problem by a fully polynomial-time approximation scheme}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {30}, year = {2010}, pages = {191-203}, zbl = {1225.90105}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1119} }
Stanisław Gawiejnowicz; Wiesław Kurc; Lidia Pankowska. Solving a permutation problem by a fully polynomial-time approximation scheme. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 30 (2010) pp. 191-203. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1119/
[000] [1] S. Gawiejnowicz, Time-Dependent Scheduling, Monographs in Theoretical Computer Science: An EATCS Series (Springer, 2008).
[001] [2] S. Gawiejnowicz, W. Kurc and L. Pankowska, A greedy approach for a time-dependent scheduling problem, Lecture Notes in Computer Science 2328 (2002), 79-86. | Zbl 1057.68547
[002] [3] S. Gawiejnowicz, W. Kurc and L. Pankowska, Analysis of a time-dependent scheduling problem by signatures of deterioration rate sequences, Discrete Appl. Math. 154 (2006), 2150-2166. doi: 10.1016/j.dam.2005.04.016 | Zbl 1113.90059
[003] [4] O.H. Ibarra and C.E. Kim, Fast approximation algorithms for the knapsack and sum of subset problems, Journal of ACM 22 (1975), 463-468. doi: 10.1145/321906.321909 | Zbl 0345.90049
[004] [5] G. Mosheiov, V-shaped policies for scheduling deteriorating jobs, Operations Research 39 (1991), 979-991. doi: 10.1287/opre.39.6.979 | Zbl 0748.90033
[005] [6] G. Woeginger, When does a dynamic programming formulation guarantee the existence of an FPTAS? INFORMS Journal on Computing 12 (2000), 57-73. doi: 10.1287/ijoc.12.1.57.11901