The existence of Carathéodory solutions of hyperbolic functional differential equations
Adrian Karpowicz
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 30 (2010), p. 121-140 / Harvested from The Polish Digital Mathematics Library

We consider the following Darboux problem for the functional differential equation ²u/xy(x,y)=f(x,y,u(x,y),u/x(x,y),u/y(x,y)) a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b]0,a]×(0,b],where the function u(x,y):[-a,0]×[-b,0]k is defined by u(x,y)(s,t)=u(s+x,t+y) for (s,t) ∈ [-a₀,0]×[-b₀,0]. We prove a theorem on existence of the Carathéodory solutions of the above problem.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:271181
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1115,
     author = {Adrian Karpowicz},
     title = {The existence of Carath\'eodory solutions of hyperbolic functional differential equations},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {30},
     year = {2010},
     pages = {121-140},
     zbl = {1201.35082},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1115}
}
Adrian Karpowicz. The existence of Carathéodory solutions of hyperbolic functional differential equations. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 30 (2010) pp. 121-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1115/

[000] [1] A. Alexiewicz and W. Orlicz, Some remarks on the existence and uniqueness of solutions of the hyperbolic equation ∂²z/∂x∂y = f(x,y,z,∂z/∂x,∂z/∂y), Stud. Math. 15 (1956), 201-215. | Zbl 0070.09204

[001] [2] E. Berkson and T.A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, J. London Math. Soc. 30 (1984), 305-321. | Zbl 0537.47017

[002] [3] T. Człapiński, Hyperbolic functional differential equations, Gdańsk, 1999.

[003] [4] M. Dawidowski, I. Kubiaczyk and B. Rzepecki, An existence theorem for the hyperbolic equation zxy=f(x,y,z) in Banach space, Demonstr. Math. 20 (1987), 489-493. | Zbl 0689.35095

[004] [5] M. Dawidowski and I. Kubiaczyk, On bounded solutions of hyperbolic differential inclusion in Banach space, Demonstr. Math. 25 (1992), 153-159.

[005] [6] K. Deimling, A Carathéodory theory for systems of integral equations, Ann. Mat. Pura Appl. 86 (1970), 217-260.

[006] [7] B. Palczewski and W. Pawelski, Some remarks on the uniqueness of solutions of the Darboux Problem with conditions of the Krasnoleski-Krein type, Ann. Pol. Math. 14 (1964), 97-100. | Zbl 0132.07208

[007] [8] A. Pelczar, Some functional differential equations, Diss. Math. 100 (1973), 3-74.

[008] [9] R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publisher, cop. 2002. | Zbl 1060.65136

[009] [10] B. Rzepecki, On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach space, Rend. Semin. Mat.Univ. Padova 76 (1986), 201-206. | Zbl 0656.35087

[010] [11] J. Simon, Compact sets in the Space Lp(0,T;B), Annali di Matematica Pura ed Applicate 146 (1986), 65-96. | Zbl 0629.46031

[011] [12] J. Straburzyński, The existence of solutions of some functional-differential equations of hyperbolic type, Demonstr. Math. 12 (1979), 105-121. | Zbl 0434.35062

[012] [13] J. Straburzyński, Existence of solutions of the Goursa problem for some functional-differential equations, Demonstr. Math. 15 (1982), 883-897. | Zbl 0536.35013

[013] [14] W. Walter, Ordinary functional differential equations and inequalities in the sense of Carathéodory, Appl. Anal. 70 (1998), 85-95. | Zbl 1031.34068

[014] [15] W. Walter, Differential and Integral Inequalities, Springer, 1970. doi:10.1007/978-3-642-86405-6