We consider the following Darboux problem for the functional differential equation a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b]where the function is defined by for (s,t) ∈ [-a₀,0]×[-b₀,0]. We prove a theorem on existence of the Carathéodory solutions of the above problem.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1115, author = {Adrian Karpowicz}, title = {The existence of Carath\'eodory solutions of hyperbolic functional differential equations}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {30}, year = {2010}, pages = {121-140}, zbl = {1201.35082}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1115} }
Adrian Karpowicz. The existence of Carathéodory solutions of hyperbolic functional differential equations. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 30 (2010) pp. 121-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1115/
[000] [1] A. Alexiewicz and W. Orlicz, Some remarks on the existence and uniqueness of solutions of the hyperbolic equation ∂²z/∂x∂y = f(x,y,z,∂z/∂x,∂z/∂y), Stud. Math. 15 (1956), 201-215. | Zbl 0070.09204
[001] [2] E. Berkson and T.A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, J. London Math. Soc. 30 (1984), 305-321. | Zbl 0537.47017
[002] [3] T. Człapiński, Hyperbolic functional differential equations, Gdańsk, 1999.
[003] [4] M. Dawidowski, I. Kubiaczyk and B. Rzepecki, An existence theorem for the hyperbolic equation in Banach space, Demonstr. Math. 20 (1987), 489-493. | Zbl 0689.35095
[004] [5] M. Dawidowski and I. Kubiaczyk, On bounded solutions of hyperbolic differential inclusion in Banach space, Demonstr. Math. 25 (1992), 153-159.
[005] [6] K. Deimling, A Carathéodory theory for systems of integral equations, Ann. Mat. Pura Appl. 86 (1970), 217-260.
[006] [7] B. Palczewski and W. Pawelski, Some remarks on the uniqueness of solutions of the Darboux Problem with conditions of the Krasnoleski-Krein type, Ann. Pol. Math. 14 (1964), 97-100. | Zbl 0132.07208
[007] [8] A. Pelczar, Some functional differential equations, Diss. Math. 100 (1973), 3-74.
[008] [9] R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publisher, cop. 2002. | Zbl 1060.65136
[009] [10] B. Rzepecki, On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach space, Rend. Semin. Mat.Univ. Padova 76 (1986), 201-206. | Zbl 0656.35087
[010] [11] J. Simon, Compact sets in the Space , Annali di Matematica Pura ed Applicate 146 (1986), 65-96. | Zbl 0629.46031
[011] [12] J. Straburzyński, The existence of solutions of some functional-differential equations of hyperbolic type, Demonstr. Math. 12 (1979), 105-121. | Zbl 0434.35062
[012] [13] J. Straburzyński, Existence of solutions of the Goursa problem for some functional-differential equations, Demonstr. Math. 15 (1982), 883-897. | Zbl 0536.35013
[013] [14] W. Walter, Ordinary functional differential equations and inequalities in the sense of Carathéodory, Appl. Anal. 70 (1998), 85-95. | Zbl 1031.34068
[014] [15] W. Walter, Differential and Integral Inequalities, Springer, 1970. doi:10.1007/978-3-642-86405-6