Second-order viability result in Banach spaces
Myelkebir Aitalioubrahim ; Said Sajid
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 30 (2010), p. 5-21 / Harvested from The Polish Digital Mathematics Library

We show the existence result of viable solutions to the second-order differential inclusion ẍ(t) ∈ F(t,x(t),ẋ(t)), x(0) = x₀, ẋ(0) = y₀, x(t) ∈ K on [0,T], where K is a closed subset of a separable Banach space E and F(·,·,·) is a closed multifunction, integrably bounded, measurable with respect to the first argument and Lipschitz continuous with respect to the third argument.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:271139
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1109,
     author = {Myelkebir Aitalioubrahim and Said Sajid},
     title = {Second-order viability result in Banach spaces},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {30},
     year = {2010},
     pages = {5-21},
     zbl = {1206.34083},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1109}
}
Myelkebir Aitalioubrahim; Said Sajid. Second-order viability result in Banach spaces. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 30 (2010) pp. 5-21. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1109/

[000] [1] B. Aghezzaf and S. Sajid, On the second-order contingent set and differential inclusions, J. Conv. Anal. 7 (1) (2000), 183-195. | Zbl 0958.34010

[001] [2] K.S. Alkulaibi and A.G. Ibrahim, On existence of monotone solutions for second-order non-convex differential inclusions in infinite dimensional spaces, Portugaliae Mathematica 61 (2) (2004), 231-143. | Zbl 1062.34062

[002] [3] S. Amine, R. Morchadi and S. Sajid, Carathéodory perturbation of a second-order differential inclusions with constraints, Electronic J. Diff. Eq. (2005), 1-11. | Zbl 1096.34008

[003] [4] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. doi:10.1007/BFb0087685

[004] [5] B. Cornet and G. Haddad, Théorème de viabilité pour les inclusions différentielles du seconde ordre, Isr. J. Math. 57 (2) (1987), 225-238. | Zbl 0659.34012

[005] [6] A. Dubovitskij and A.A. Miljutin, Extremums problems with constraints, Soviet Math. 4 (1963), 452-455. | Zbl 0133.05501

[006] [7] T.X. Duc Ha, Existence of viable solutions for nonconvex-valued differential inclusions in Banach spaces, Portugaliae Mathematica 52 Fasc. 2, 1995. | Zbl 0824.34021

[007] [8] M. Larrieu, Invariance d'un fermé pour un champ de vecteurs de Carathéodory, Pub. Math. de Pau, 1981.

[008] [9] V. Lupulescu, A viability result for second order differential inclusions, Electron J. Diff. Eq. 76 (2003), 1-12. | Zbl 1023.34010

[009] [10] V. Lupulescu, Existence of solutions for nonconvex second order differential inclusions, Applied Math. E-notes 3 (2003), 115-123. | Zbl 1034.34018

[010] [11] R. Morchadi and S. Sajid, Noncovex second-order differential inclusion, Bulletin of the Polish Academy of Sciences 47 (3) (1999). | Zbl 0943.34054

[011] [12] Q. Zhu, On the solution set of differential inclusions in Banach spaces, J. Differ. Eq. 41 (2001), 1-8.