Set-valued fractional order differential equations in the space of summable functions
Hussein A.H. Salem
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 28 (2008), p. 83-93 / Harvested from The Polish Digital Mathematics Library

In this paper, we study the existence of integrable solutions for the set-valued differential equation of fractional type (Dα-i=1n-1aiDαi)x(t)F(t,x(φ(t))), a.e. on (0,1), I1-αx(0)=c, αₙ ∈ (0,1), where F(t,·) is lower semicontinuous from ℝ into ℝ and F(·,·) is measurable. The corresponding single-valued problem will be considered first.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:271184
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1096,
     author = {Hussein A.H. Salem},
     title = {Set-valued fractional order differential equations in the space of summable functions},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {28},
     year = {2008},
     pages = {83-93},
     zbl = {1181.26018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1096}
}
Hussein A.H. Salem. Set-valued fractional order differential equations in the space of summable functions. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 28 (2008) pp. 83-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1096/

[000] [1] A. Babakhani and V. Daftardar-Gejji, Existence of positive solutions of nonlinear fractional differential equations, J. Math. Anal. Appl. 278 (2003), 434-442. | Zbl 1027.34003

[001] [2] Z. Artstein and K. Prikry, Carathéodory selections and the Scorza Dragoni property, J. Math. Anal. Appl. 127 (1987), 540-547. | Zbl 0649.28011

[002] [3] M. Bassam, Some existence theorems on D.E. of generalized order, J. fur die Reine und Angewandte Mathematik 218 (1965), 70-78.

[003] [Bc] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86. | Zbl 0677.54013

[004] [5] M. Cichoń, Multivalued perturbations of m-accretive differential inclusions in a non-separable Banach space, Commentationes Math. 32 (1992), 11-17. | Zbl 0770.34015

[005] [6] C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 1991.

[006] [4] V. Daftardar-Gejji, Positive solutions of a system of non-autonomous fractional differential equations, J. Math. Anal. Appl. 302 (2005), 56-64. | Zbl 1064.34004

[007] [7] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.

[008] [8] J. Dugundji and A. Granas, Fixed Point Theory, Monografie Mathematyczne, PWN, Warsaw, 1982.

[009] [9] A.M.A. El-Sayed and A.G. Ibrahim, Multivalued fractional differential equations, Appl. Math. Comput. 68 (1995), 15-25. | Zbl 0830.34012

[010] [AAA] A.M.A. El-Sayed and A.G. Ibrahim, Definite integral of fractional order for set-valued functions, J. Frac. Calculus 11 (1996), 15-25.

[011] [11] A.M.A. El-Sayed, Nonlinear functional differential equations of arbitrary order, Nonlinear Anal. 33 (2) (1998), 181-186. | Zbl 0934.34055

[012] [12] A.M.A. El-Sayed and A.G. Ibrahim, Set-valued integral equations of arbitrary (fractional) order, Appl. Math. Comput. 118 (2001), 113-121. | Zbl 1024.45003

[013] [14] V.G. Gutev, Selection theorems under an assumption weaker than lower semi-continuity, Topol. Appl. 50 (1993), 129-138. | Zbl 0809.54015

[014] [15] S.B. Hadid, Local and global existence theorems on differential equations of non-integer order, J. Frac. Calculus 7 (1995), 101-105. | Zbl 0839.34003

[015] [kil] A.A. Kilbas and J.J. Trujillo, Differential equations of fractional order: methods, results and problems, I, Appl. Anal. 78 (2001), 153-192. | Zbl 1031.34002

[016] [kst] A.A. Kilbas, H.M. Srivastava and J.J Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam, 2006. | Zbl 1092.45003

[017] [16] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993. | Zbl 0789.26002

[018] [17] K. Przesławski and L.E. Rybiński, Michael selection theorem under weak lower semicontinuity assumption, Proc. Amer. Math. Soc. 109 (1990), 537-543. | Zbl 0706.54018

[019] [18] D. Repovs and P.V. Semenov, Continuous Selection of Multivalued Mappings, Kluwer Academic Press, 1998. | Zbl 0915.54001

[020] [19] S. Samko, A. Kilbas and O. Marichev, Fraction Integrals and Drivatives, Gordon and Breach Science Publisher, 1993. | Zbl 0818.26003

[021] [sz] J.-P. Sun and Y.-H. Zhao, Multiplicity of positive solutions of a class of nonlinear fractional differential equations, J. Computer and Math. Appl. 49 (2005), 73-80. | Zbl 1085.34501

[022] [20] C. Swartz, Measure, Integration and Function Spaces, World Scientific, Singapore, 1994.