New fixed point results are presented for multivalued maps defined on subsets of a Fréchet space E. The proof relies on the notion of a pseudo open set, degree and index theory, and on viewing E as the projective limit of a sequence of Banach spaces.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1092, author = {R.P. Agarwal and D. O'Regan and D.R. Sahu}, title = {Fixed point theory for multivalued maps in Fr\'echet spaces via degree and index theory}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {27}, year = {2007}, pages = {399-409}, zbl = {1158.47040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1092} }
R.P. Agarwal; D. O'Regan; D.R. Sahu. Fixed point theory for multivalued maps in Fréchet spaces via degree and index theory. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 27 (2007) pp. 399-409. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1092/
[000] [1] R.P. Agarwal, M. Frigon and D. O'Regan, A survey of recent fixed point theory in Fréchet spaces, Nonlinear Analysis and Applications: to V. Lakshmikantham on his 80th birthday, Kluwer Acad. Publ., Dordrecht 1 (2003), 75-88.
[001] [2] R.P. Agarwal and D. O'Regan, An index theory for countably P-concentrative J maps, Applied Math. Letters 16 (2003), 1265-1271. | Zbl 1063.47057
[002] [3] J. Andres, G. Gabor and L. Gorniewicz, Boundary value problems on infinite intervals, Trans. Amer. Math. Soc. 351 (1999), 4861-4903. | Zbl 0936.34023
[003] [4] P.M. Fitzpatrick and W.V. Petryshyn, Fixed point theorems and fixed point index for multivalued mappings in cones, J. London Math. Soc. 12 (1975), 75-82.
[004] [5] L. Gorniewicz, A. Granas and W. Kryszewski, On the homotopy method in the fixed point index theory of multi-valued mappings of compact absolute neighborhood retracts, J. Math. Anal. Appl. 161 (1991), 457-473. | Zbl 0757.54019
[005] [6] L.V. Kantorovich and G.P. Akilov, Functional analysis in normed spaces, Pergamon Press, Oxford, 1964. | Zbl 0127.06104
[006] [7] D. O'Regan, Y.J. Cho and Y.Q. Chen, Topological Degree Theory and Applications, Chapman and Hall/CRC, Boca Raton, 2006.
[007] [8] M. Väth, Fixed point theorems and fixed point index for countably condensing maps, Topol. Methods Nonlinear Anal. 13 (1999), 341-363. | Zbl 0964.47025
[008] [9] M. Väth, Merging of degree and index theory, Fixed Point Theory and Applications, Volume 2006 (2006), Article ID 36361, 30 pages.