In this paper, we prove some fixed point theorems for single valued mappings satisfying an implicit relation on space with two metrics. In addition we give a homotopy result using our theorems.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1089, author = {I. Altun and D. Turkoglu}, title = {Fixed point and homotopy result for mappings satisfying an implicit relation}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {27}, year = {2007}, pages = {349-363}, zbl = {1152.54350}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1089} }
I. Altun; D. Turkoglu. Fixed point and homotopy result for mappings satisfying an implicit relation. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 27 (2007) pp. 349-363. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1089/
[000] [1] R.P. Agarwal and D. O'Regan, Fixed point theory for generalized contraction on space with two metrics, J. Math. Anal. Appl. 248 (2000), 402-414.
[001] [2] R.P. Agarwal, D. O'Regan and M. Sambandham, Random and deterministic fixed point theory for generalized contractive maps, Appl. Anal. 83 (7) (2004), 711-725. | Zbl 1088.47044
[002] [3] G.E. Hardy and T.G. Rogers, A generalization of a fixed point theorem of Riech, Canad. Math. Bull. 16 (1973), 201-206. | Zbl 0266.54015
[003] [4] M. Imdad, S. Kumar and M.S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Rad. Math. 11 (1) (2002), 135-143. | Zbl 1033.54025
[004] [5] V. Popa, A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation, Demonstratio Math. 33 (1) (2000), 159-164. | Zbl 0947.54023
[005] [6] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math. 32 (1) (1999), 157-163. | Zbl 0926.54030
[006] [7] S. Sharma and B. Desphande, On compatible mappings satisfying an implicit relation in common fixed point consideration, Tamkang J. Math. 33 (3) (2002), 245-252. | Zbl 1029.47037