Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces
Abada Nadjat ; Benchohra Mouffak ; Hammouche Hadda ; Ouahab Abdelghani
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 27 (2007), p. 329-347 / Harvested from The Polish Digital Mathematics Library

In this paper, we use the extrapolation method combined with a recent nonlinear alternative of Leray-Schauder type for multivalued admissible contractions in Fréchet spaces to study the existence of a mild solution for a class of first order semilinear impulsive functional differential inclusions with finite delay, and with operator of nondense domain in original space.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:271146
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1088,
     author = {Abada Nadjat and Benchohra Mouffak and Hammouche Hadda and Ouahab Abdelghani},
     title = {Controllability of impulsive semilinear functional differential inclusions with finite delay in Fr\'echet spaces},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {27},
     year = {2007},
     pages = {329-347},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1088}
}
Abada Nadjat; Benchohra Mouffak; Hammouche Hadda; Ouahab Abdelghani. Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 27 (2007) pp. 329-347. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1088/

[00000] [1] N.U. Ahmed, Semigroup Theory with Applications to Systems and Control, Pitman Research Notes in Mathematics Series, 246. Longman Scientific & Technical, Harlow John Wiley & Sons, Inc., New York, 1991.

[00001] [2] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Berlin, 1995.

[00002] [3] B. Amir and L. Maniar, Application de la théorie d'extrapolation pour la résolution des équations différentielles à retard homogènes, Extracta Math. 13 (1998), 95-105.

[00003] [4] B. Amir and L. Maniar, Composition of pseudo almost periodic functions and Cauchy problems with operator of nondense domain, Ann. Math. Blaise Pascal 6 (1999), 1-11.

[00004] [5] W. Arendt, C.J.K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplacian Transforms and Cauchy Problems, Monographs Math, Vol. 96, Birkhäuser Verlag, 2001.

[00005] [6] M. Benchohra, L. Górniewicz, S.K. Ntouyas and A. Ouahab, Controllability results for impulsive functional differential inclusions, Rep. Math. Phys. 54 (2004), 211-227.

[00006] [7] M. Benchohra, L. Górniewicz, S.K. Ntouyas and A. Ouahab, Existence results for nondensely defined impulsive semilinear functional differential equations, Nonlinear Analysis and Applications, edited by R.P. Agarwal and D. O'Regan, Kluwer, 2003.

[00007] [8] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, Vol. 2, New York, 2006.

[00008] [9] M. Benchohra and A. Ouahab, Controllability results for functional semilinear differential inclusions in Fréchet spaces, Nonlinear Anal. 61 (2005), 405-423.

[00009] [10] G. Da Prato and E. Grisvard, On extrapolation spaces, Rend. Accad. Naz. Lincei. 72 (1982), 330-332.

[00010] [11] G. Da Prato and E. Sinestrari, Differential operators with non-dense domains, Ann. Scuola Norm. Sup. Pisa Sci. 14 (1987), 285-344.

[00011] [12] K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.

[00012] [13] M. Frigon, Fixed Point Results for Multivalued Contractions on Gauge Spaces, Set Valued Mappings with Applications in Nonlinear Analysis, 175-181, Ser. Math. Anal. Appl. 4, Taylor & Francis, London, 2002.

[00013] [14] E.P. Gatsori, L. Górniewicz and S.K. Ntouyas, Controllability results for nondensely defined evolution impulsive differential inclusions with nonlocal conditions, Panamer. Math. J. 15 (2) (2005), 1-27.

[00014] [15] G. Guhring, F. Rabiger and W. Ruess, Linearized stability for semilinear non-autonomous evolution equations to retarded differential equations, Differential Integral Equations 13 (2000), 503-527.

[00015] [16] J. Henderson and A. Ouahab, Existence results for nondensely defined semilinear functional differential inclusions in Fréchet spaces, Electron. J. Qual. Theory Differ. Equ. (2005), (11), 1-17.

[00016] [17] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991.

[00017] [18] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.

[00018] [19] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser Verlag, 1995.

[00019] [20] L. Maniar and A. Rhandi, Extrapolation and inhomogeneous retarded differential equations on infinite-dimensional spaces, Circ. Mat. Palermo 47 (2) (1998), 331-346.

[00020] [21] R. Nagel and E. Sinestrari, Inhomogeneous Volterra Integrodifferential Equations for Hille-Yosida operators, In Functional Analysis, edited by K.D. Bierstedt, A. Pietsch, W.M. Ruess and D. Voigt, 51-70, Marcel Dekker, 1998.

[00021] [22] J. Neerven, The Adjoint of a Semigroup of Linear Operators, Lecture Notes in Math. 1529, Springer-Verlag, New York, 1992.

[00022] [23] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

[00023] [24] M.D. Quinn and N. Carmichael, An approach to nonlinear control problem using fixed point methods, degree theory, pseudo-inverses, Numer. Funct. Anal. Optim. 7 (1984-85), 197-219.

[00024] [25] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.