We prove an existence theorem for the equation x' = f(t,xₜ), x(Θ) = φ(Θ), where xₜ(Θ) = x(t+Θ), for -r ≤ Θ < 0, t ∈ Iₐ, Iₐ = [0,a], a ∈ R₊ in a Banach space, using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function f are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function f satisfies some conditions expressed in terms of the measure of weak noncompactness.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1087, author = {A. Sikorska-Nowak}, title = {Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {27}, year = {2007}, pages = {315-327}, zbl = {1149.34053}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1087} }
A. Sikorska-Nowak. Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 27 (2007) pp. 315-327. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1087/
[000] [1] Z. Artstein, Topological dynamics of ordinary differential equations and Kurzweil equations, J. Differential Equations 23 (1977), 224-243. | Zbl 0353.34044
[001] [2] J.M. Ball, Weak continuity properties of mappings and semi-groups, Proc. Royal Soc. Edinbourgh Sect. A 72 (1979), 275-280.
[002] [3] J. Banaś, Demicontinuity and weak sequential continuity of operators in the Lebesgue space, Proceedings of the 1th Polish Symposium on Nonlinear Analysis, Łódź (1997), 124-129.
[003] [4] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math., 60, Dekker, New York and Basel, 1980. | Zbl 0441.47056
[004] [5] F.S. DeBlasi, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259-262.
[005] [6] S.S. Cao, The Henstock integral for Banach valued functions, SEA Bull. Math. 16 (1992), 36-40.
[006] [7] T.S. Chew, On Kurzweil generalized ordinary differential equations, J. Differential Equations 76 (1988), 286-293. | Zbl 0666.34041
[007] [8] T.S Chew and F. Flordeliza, On x' = f(t,x) and Henstock-Kurzweil integrals, Differential and Integral Equations 4 (1991), 861-868. | Zbl 0733.34004
[008] [9] T.S. Chew, W. van Brunt and G.C. Wake, On retarded functional differential equations and Henstock-Kurzweil integrals, Differential and Integral Equations 9 (1996), 569-580. | Zbl 0873.34054
[009] [10] T.S. Chew and T.L. Toh, On functional differential equation with unbounded delay and Henstock-Kurzweil integrals, New Zeland Journal of Mathematics 28 (1999), 111-123. | Zbl 0961.34053
[010] [11] M. Cichoń, Convergence theorems for the Henstock-Kurzweil-Pettis integral, Acta Math. Hungarica 92 (2001), 75-82. | Zbl 1001.26003
[011] [12] M. Cichoń, Weak solutions of differential equations in Banach spaces, Disc. Math. Differ. Incl. 15 (1995), 5-14.
[012] [13] M. Cichoń, I. Kubiaczyk and A. Sikorska, The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem, Czech. Math. J. 54 (129) (2004), 279-289. | Zbl 1080.34550
[013] [14] M.C. Deflour and S.K. Mitter, Hereditary differential systems with constant delays, I General case, J. Differential Equations 9 (1972), 213-235. | Zbl 0242.34055
[014] [15] R.F.Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1991), 81-86. | Zbl 0506.28007
[015] [16] R.A. Gordon, Riemann integration in Banach spaces, Rocky Mountain J. Math. 21 (1991), 923-949. | Zbl 0764.28008
[016] [17] R.A. Gordon, The Denjoy extension of the Bochner, Pettis and Dunford integrals, Studia Math. 92 (1989), 73-91. | Zbl 0681.28006
[017] [18] R.A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Amer. Math. Soc., Providence, R.I. 1994. | Zbl 0807.26004
[018] [19] R.A. Gordon, The McShane integral of Banach-valued functions, Illinois J. Math. 34 (1990), 557-567. | Zbl 0685.28003
[019] [20] J. Hale, Functional Differential Equations, Springer-Verlag, 1971. | Zbl 0222.34003
[020] [21] R. Henstock, The General Theory of Integration, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1991. | Zbl 0745.26006
[021] [22] W.J. Knight, Solutions of differential equations in Banach spaces, Duke Math. J. 41 (1974), 437-442 | Zbl 0288.34063
[022] [23] I. Kubiaczyk, On a fixed point theorem for weakly sequentially continuous mappings, Disc. Math. Differ. Incl. 15 (1995), 15-20. | Zbl 0832.47046
[023] [24] I. Kubiaczyk, A. Sikorska, Differential equations in Banach spaces and Henstock-Kurzweil integrals, Disc. Math. Differ. Incl. 19 (1999), 35-43. | Zbl 0962.34043
[024] [25] J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J. 7 (1957), 642-659. | Zbl 0642.26004
[025] [26] A.R. Mitchell and Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, Nonlinear Equations in Abstract Spaces, (V. Lakshmikantham, ed.), 1978, 378-404.
[026] [27] P.Y. Lee, Lanzhou Lectures on Henstock Integration, Ser. Real Anal. 2, World Sci., Singapore, 1989.
[027] [28] B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304. | Zbl 0019.41603
[028] [29] A. Sikorska-Nowak, Retarded functional differential equations in Banach spaces and Henstock-Kurzweil integrals, Demonstratio Math. 35 (2002), 49-60. | Zbl 1011.34066