Continuous selections and approximations in α-convex metric spaces
A. Kowalska
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 27 (2007), p. 265-294 / Harvested from The Polish Digital Mathematics Library

In the paper, the notion of a generalized convexity was defined and studied from the view-point of the selection and approximation theory of set-valued maps. We study the simultaneous existence of continuous relative selections and graph-approximations of lower semicontinuous and upper semicontinuous set-valued maps with α-convex values having nonempty intersection.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:271154
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1085,
     author = {A. Kowalska},
     title = {Continuous selections and approximations in $\alpha$-convex metric spaces},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {27},
     year = {2007},
     pages = {265-294},
     zbl = {1146.54009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1085}
}
A. Kowalska. Continuous selections and approximations in α-convex metric spaces. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 27 (2007) pp. 265-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1085/

[000] [1] H. Ben-El-Mechaiekh and W. Kryszewski, Equilibria of set-valued maps onnonconvex domains, Trans. Amer. Math. Soc. 349 (1997), 4159-4179. | Zbl 0887.47040

[001] [2] F.S. de Blasi, L. Górniewicz and G. Pianigiani, Fixed point index for multivaled mappngs in convex metric spaces, private communication.

[002] [3] F.S. de Blasi and G. Pianigiani, Approximate selections in α-convex metric spaces and topological degree, Topol. Methods Nonlinear Anal. 24 (2) (2004), 347-375. | Zbl 1066.54023

[003] [4] F.S. de Blasi and G. Pianigiani, Continuous selections in α-convex metric spaces, Bull. Poll. Acad. Sci. Math. 52 (3) (2004), 303-317. | Zbl 1101.54022

[004] [5] F.S. de Blasi and G. Pianigiani, Pseudo-barycenters and approximations of multifunctions in metric spaces, submitted. | Zbl 1081.54014

[005] [6] K. Borsuk, Theory of retracts, Monografie Matematyczne 44, Warszawa, 1967.

[006] [7] A. Cellina, A further result on the approximation of set-valued mapping, Atti Accad. Naz. Licei Rend. Cl. Sci. Fis. Mat. Natur. 48 (8) (1970), 412-416.

[007] [8] G. Colombo and V. Goncharov, Continuous selections via geodesics, Topol. Methods Nonlinear Anal. 18 (1) (2001), 171-182. | Zbl 1009.46010

[008] [9] J. Dugundji, Topology, Allyn and Bacom, Boston, 1966.

[009] [10] R. Engelking, General Topology, PWN, Warszawa, 1977.

[010] [11] J.G. Hocking and G.S. Young, Topology, Addison-Wesley Publishing Company, Inc., Massachusetts, 1961.

[011] [12] W. Kryszewski, Homotopy properties of set-valued mappings, The Nicholas Copernicus University, Toruń, 1997. | Zbl 1250.54022

[012] [13] W. Kryszewski, Graph-approximation of set-valued maps. A survey, Non. Anal. 2 (1998), 223-235. | Zbl 1086.54500

[013] [14] W. Kryszewski, Graph-approximation of set-valued maps on noncompact domains, Topology & Appl. 83 (1988), 1-21. | Zbl 0933.54023

[014] [15] E. Michael, Continuous selections I, Ann. of Math. 63 (2) (1956), 361-382. | Zbl 0071.15902

[015] [16] D. Repovs and P.Semenov, On relative approximation theorems, Houston J. Math. 28 (2002), 497-509. | Zbl 1064.54034

[016] [17] J. Schwartz, Non-linear Functional Analysis, Gordon and Breach, New York, 1966.

[017] [18] X. Zheng, Aproximate Selection Theorems and Their Applications, J. Math. Anal. Appl. 212 (1997), 88-97. | Zbl 0918.54018