Error estimates for finite element approximations of elliptic control problems
Walter Alt ; Nils Bräutigam ; Arnd Rösch
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 27 (2007), p. 7-22 / Harvested from The Polish Digital Mathematics Library

We investigate finite element approximations of one-dimensional elliptic control problems. For semidiscretizations and full discretizations with piecewise constant controls we derive error estimates in the maximum norm.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:271155
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1073,
     author = {Walter Alt and Nils Br\"autigam and Arnd R\"osch},
     title = {Error estimates for finite element approximations of elliptic control problems},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {27},
     year = {2007},
     pages = {7-22},
     zbl = {1191.49035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1073}
}
Walter Alt; Nils Bräutigam; Arnd Rösch. Error estimates for finite element approximations of elliptic control problems. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 27 (2007) pp. 7-22. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1073/

[000] [1] J.P. Aubin, Behaviour of the error of the approximate solution of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods, Ann. Scoula Norm. Sup. Pisa 21 (1967), 599-637. | Zbl 0276.65052

[001] [2] N. Bräutigam, Diskretisierung elliptischer Steuerungsprobleme, Ph.D. Thesis, Jena 2006.

[002] [3] N. Bräutigam, Discretization of Elliptic Control Problems by Finite Elements, Technical Report, Jena 2006.

[003] [4] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland 1987.

[004] [5] C. Groß mann and H.-G. Roos, Numerik partieller Differentialgleichungen, Teubner 2005.

[005] [6] M. Hinze, A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case, Computational Optimization and Applications 30 (2005), 45-61. | Zbl 1074.65069

[006] [7] K. Malanowski, Convergence of Approximations vs. Regularity of Solutions for Convex, Control-Constrained Optimal Control Problems, Appl. Math. Optim. 8 (1981), 69-95. | Zbl 0479.49017

[007] [8] C. Meyer and A. Rösch, Superconvergence Properties of Optimal Control Problems, SIAM J. Contr. Opt. 43 (2004), 970-985. | Zbl 1071.49023

[008] [9] J.A. Nitsche, Ein Kriterium für die Quasioptimalität des Ritzschen Verfahrens, Numerische Mathematk 11 (1968), 346-348. | Zbl 0175.45801

[009] [10] B. Sendov and V.A. Popov, The Averaged Moduli of Smoothness, Wiley-Interscience 1988. | Zbl 0653.65002

[010] [11] F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen, Vieweg 2005.