Selection theorem in L¹
Andrzej Nowak ; Celina Rom
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 26 (2006), p. 123-127 / Harvested from The Polish Digital Mathematics Library

Let F be a multifunction from a metric space X into L¹, and B a subset of X. We give sufficient conditions for the existence of a measurable selector of F which is continuous at every point of B. Among other assumptions, we require the decomposability of F(x) for x ∈ B.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:271151
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1069,
     author = {Andrzej Nowak and Celina Rom},
     title = {Selection theorem in L$^1$},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {26},
     year = {2006},
     pages = {123-127},
     zbl = {1132.26383},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1069}
}
Andrzej Nowak; Celina Rom. Selection theorem in L¹. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 26 (2006) pp. 123-127. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1069/

[000] [1] S.M. Ageev and D. Repovs, On selection theorems with decomposable values, Topol. Methods Nonlinear Anal. 15 (2000), 385-399. | Zbl 0971.54017

[001] [2] A.V. Arutyunov, Special selectors of multivalued mappings (in Russian), Dokl. Akad. Nauk Ross. Akad. Nauk 377 (3) (2001), 298-300. English translation: Dokl. Math. 63 (2) (2001), 182-184. | Zbl 1048.54011

[002] [3] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86. | Zbl 0677.54013

[003] [4] A. Fryszkowski, Continuous selections for a class of non-convex multivalued maps, Studia Math. 76 (1983), 163-174. | Zbl 0534.28003

[004] [5] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182. | Zbl 0368.60006

[005] [6] C.J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. | Zbl 0296.28003

[006] [7] S.J. Leese, Multifunctions of Souslin type, Bull. Austral. Math. Soc. 11 (1974), 395-411. | Zbl 0287.04005

[007] [8] A. Nowak and C. Rom, Decomposable hulls of multifunctions, Discuss. Math. Differ. Incl. Control Optim. 22 (2002), 233-241. | Zbl 1032.26025

[008] [9] Cz. Olech, Decomposability as a substitute for convexity, Multifunctions and Integrands: Stochastic Analysis, Approximation and Optimization, Proc. Conf. Catania, Italy, June 7-16, 1983 (G. Salinetti, ed.); Lecture Notes in Math., vol. 1091, Springer-Verlag, Berlin, 1984, pp. 193-205.

[009] [10] A.A. Tolstonogov and D.A. Tolstonogov, Lₚ-continuous extreme selectors of multifunctions with decomposable values: Existence theorems, Set-Valued Anal. 4 (1996), 173-203. | Zbl 0847.54019

[010] [11] D.H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (5) (1977), 859-903. | Zbl 0407.28006