In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1066, author = {Bianca Satco}, title = {Volterra integral inclusions via Henstock-Kurzweil-Pettis integral}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {26}, year = {2006}, pages = {87-101}, zbl = {1131.45001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1066} }
Bianca Satco. Volterra integral inclusions via Henstock-Kurzweil-Pettis integral. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 26 (2006) pp. 87-101. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1066/
[000] [1] J.P. Aubin and A. Cellina, Differential Inclusions, Springer 1984.
[001] [2] R.J. Aumann, Integrals of Set-Valued Functions, J. Math. Anal. Appl. 12 (1965), 1-12. | Zbl 0163.06301
[002] [3] D.L. Azzam, C. Castaing and L. Thibault, Three boundary value problems for second order differential inclusions in Banach spaces. Well-posedness in optimization and related topics, Control Cybernet. 31 (3) (2002), 659-693. | Zbl 1111.34303
[003] [4] E. Balder and A.R. Sambucini, On weak compactness and lower closure results for Pettis integrable (multi)functions, Bull. Polish Acad. Sci. Math. 52 (1) (2004), 53-61. | Zbl 1110.28009
[004] [5] A. Boccuto and B. Riečan, A note on a Pettis-Kurzweil-Henstock-type integral in Riesz spaces, Real Anal. Exch. 28 (2002/2003), 153-161. | Zbl 1067.28008
[005] [6] S.S. Cao, The Henstock integral for Banach-valued functions, SEA Bull. Math. 16 (1992), 35-40. | Zbl 0749.28007
[006] [7] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin 1977.
[007] [8] M. Cichoń, On solutions of differential equations in Banach spaces, Nonlinear Anal. 60 (2005), 651-667.
[008] [9] M. Cichoń, I. Kubiaczyk and A. Sikorska, The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem, Czechoslovak Mathematical Journal 54 (129) (2004), 279-289. | Zbl 1080.34550
[009] [10] L. Di Piazza, Kurzweil-Henstock type integration on Banach spaces, Real Anal. Exch. 29 (2) (2003/2004), 543-556. | Zbl 1083.28007
[010] [11] L. Di Piazza and K. Musial, Set-valued Kurzweil-Henstock-Pettis integral, Set-Valued Anal. 13 (2) (2005), 167-179. | Zbl 1100.28008
[011] [12] I. Dobrakov, On representation of linear operators on C₀(T,X), Czechoslovak Mathematical Journal 20 (1971), 13-30. | Zbl 0225.47018
[012] [13] K. El Amri and C. Hess, On the Pettis Integral of Closed Valued Multifunctions, Set-Valued Analysis 8 (2000), 329-360. | Zbl 0974.28009
[013] [14] M. Federson and R. Bianconi, Linear integral equations of Volterra concerning Henstock integrals, Real Anal. Exch. 25 (1) (1999/2000), 389-418. | Zbl 1015.45001
[014] [15] J.L. Gamez and J. Mendoza, On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math. 130 (1998), 115-133. | Zbl 0971.28009
[015] [16] C. Godet-Thobie and B. Satco, Decomposability and uniform integrability in Pettis integration, Quaest. Math. 29 (2006), 39-58. | Zbl 1108.28010
[016] [17] R.A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Grad. Stud. in Math. 4, 1994. | Zbl 0807.26004
[017] [18] S. Krzyśka and I. Kubiaczyk, Fixed point theorems for upper semicontinuous and weakly-weakly upper semicontinuous multivalued mappings, Math. Japon. 47 (2) (1998), 237-240. | Zbl 0909.47043
[018] [19] I. Kubiaczyk, On fixed point theorem for weakly sequentially continuous mappings, Discuss. Math. Diff. Inclusions 15 (1995), 15-20. | Zbl 0832.47046
[019] [20] A. Martellotti and A.R. Sambucini, Comparison between Aumann and Bochner integral, J. Math. Anal. Appl. 260 (1) (2001), 6-17. | Zbl 0995.28007
[020] [21] A.A. Mitchell and C. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, Nonlinear equations in abstract spaces (Proc. Internat. Sympos., Univ. Texas, Arlington, Tex. 1977), 387-403, Academic Press, New York 1978.
[021] [22] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), 985-999. | Zbl 0462.34041
[022] [23] K. Musial, Topics in the theory of Pettis integration, in School of Measure theory and Real Analysis, Grado, Italy, May 1992. | Zbl 0798.46042
[023] [24] D. O'Regan and R. Precup, Fixed Point Theorems for Set-Valued Maps and Existence Principles for Integral Inclusions, J. Math. Anal. Appl. 245 (2000), 594-612. | Zbl 0956.47026
[024] [25] A.R. Sambucini, A survey on multivalued integration, Atti Sem. Mat. Fis. Univ. Modena, L (2002), 53-63. | Zbl 1096.28007
[025] [26] A. Sikorska-Nowak, Retarded functional differential equations in Banach spaces and Henstock-Kurzweil integrals, Demonstratio Math. 35 (1) (2002), 49-60. | Zbl 1011.34066
[026] [27] A.A. Tolstonogov, On comparison theorems for differential inclusions in locally convex space. I. Existence of solutions. (Russian) Diff. Urav. 17 (4) (1981), 651-659.