Continuous approximation selection theorems are given. Hence, in some special cases continuous versions of Fillipov's selection theorem follow.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1062, author = {Micha\l\ Kisielewicz}, title = {Continuous selection theorems}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {25}, year = {2005}, pages = {159-163}, zbl = {1110.54013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1062} }
Michał Kisielewicz. Continuous selection theorems. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 25 (2005) pp. 159-163. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1062/
[000] [1] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ., New York 1991. | Zbl 0731.49001
[001] [2] E. Michael, Continuous selections, Annales Math. 63 (1956), 361-382. | Zbl 0071.15902
[002] [3] L. Rybiński, On Carathéodory type selections, Fund. Math. 125 (1985), 187-193. | Zbl 0614.28005