In this paper, we prove an existence theorem for the pseudo-non-local Cauchy problem , x₀(t₀) = x₀ - g(x), where A is the infinitesimal generator of a C₀ semigroup of operator on a Banach space. The functions f,g are weakly-weakly sequentially continuous and the integral is taken in the sense of Pettis.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1055, author = {Piotr Majcher and Magdalena Roszak}, title = {On the semilinear integro-differential nonlocal Cauchy problem}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {25}, year = {2005}, pages = {5-18}, zbl = {1111.45010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1055} }
Piotr Majcher; Magdalena Roszak. On the semilinear integro-differential nonlocal Cauchy problem. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 25 (2005) pp. 5-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1055/
[000] [1] S. Aizovici and M. McKibben, Existence results for a class of abstract non-local Cauchy problems, Nonlin. Anal. TMA 39 (2000), 649-668. | Zbl 0954.34055
[001] [2] A. Alexiewicz, Functional Analysis, Monografie Matematyczne 49, Polish Scientific Publishers, Warsaw 1968 (in Polish).
[002] [3] J.M. Ball, Weak continuity properties of mapping and semi-groups, Proc. Royal Soc. Edinbourgh Sect. A 72 (1979), 275-280.
[003] [4] J. Banaś and K. Goebel, Measure of Non-compactness in Banach Spaces, Lecture Notes in Pure and Applied Math. 60, Marcel Dekker, New York-Basel 1980. | Zbl 0441.47056
[004] [5] J. Banaś and J. Rivero, On measure of weak non-compactness, Ann. Mat. Pura Appl. 125 (1987), 213-224. | Zbl 0653.47035
[005] [6] L. Byszewski, Theorems about the existence of solutions of a semilinear evolution Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494-505. | Zbl 0748.34040
[006] [7] L. Byszewski, Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution of non-local Cauchy problem, in: ''Selected Problems of Mathematics'', Cracow University of Technology (1995).
[007] [8] L. Byszewski, Differential and Functional-Differential Problems with Non-local Conditions, Cracow University of Technology (1995) (in Polish). | Zbl 0890.35163
[008] [9] L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a non-local abstract Cauchy problem in a Banach space, Applicable Anal. 40 (1990), 11-19. | Zbl 0694.34001
[009] [10] L. Byszewski and N.S. Papageorgiou, An application of a non-compactness technique to an investigation of the existence of solutions to a non-local multivalued Darboux problem, J. Appl. Math. Stoch. Anal. 12 (1999), 179-190. | Zbl 0936.35203
[010] [11] M. Cichoń, Weak solutions of differential equations in Banach spaces, Discuss. Math. Diff. Incl. 15 (1995), 5-14. | Zbl 0829.34051
[011] [12] M. Cichoń and P. Majcher, On some solutions of non-local Cauchy problem, Comment. Math. 42 (2003), 187-199. | Zbl 1053.34058
[012] [13] M. Cichoń and P. Majcher, On semilinear non-local Cauchy problems, Atti. Sem. Mat. Fis. Univ. Modena 49 (2001), 363-376. | Zbl 1072.34062
[013] [14] G. Darbo, Punti uniti in trasformazioni a condominio non compatto, Rend. Sem. Math. Univ. Padova 4 (1955), 84-92. | Zbl 0064.35704
[014] [15] F.S. DeBlasi, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259-262.
[015] [16] H.-K. Han, J.-Y. Park, Boundary controllability of differential equations with non-local condition, J. Math. Anal. Appl. 230 (1999), 242-250. | Zbl 0917.93009
[016] [17] A.R. Mitchell and Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, in: ''Nonlinear Equations in Abstract Spaces'', ed. V. Lakshmikantham, Academic Press (1978), 387-404.
[017] [18] S.K. Ntouyas and P.Ch. Tsamatos, Global existence for semilinear evolution equations with non-local conditions, J. Math. Anal. Appl. 210 (1997), 679-687.
[018] [19] N.S. Papageorgiou, On multivalued semilinear evolution equations, Boll. Un. Mat. Ital. (B) 3 (1989), 1-16. | Zbl 0688.47017
[019] [20] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York-Berlin 1983.