Multi-valued operators and fixed point theorems in Banach algebras
Bapur Chandra Dhage
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 24 (2004), p. 97-122 / Harvested from The Polish Digital Mathematics Library

In this paper, two multi-valued versions of the well-known hybrid fixed point theorem of Dhage [6] in Banach algebras are proved. As an application, an existence theorem for a certain differential inclusion in Banach algebras is also proved under the mixed Lipschitz and compactness type conditions.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:271443
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1054,
     author = {Bapur Chandra Dhage},
     title = {Multi-valued operators and fixed point theorems in Banach algebras},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {24},
     year = {2004},
     pages = {97-122},
     zbl = {1078.47004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1054}
}
Bapur Chandra Dhage. Multi-valued operators and fixed point theorems in Banach algebras. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 24 (2004) pp. 97-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1054/

[000] [1] J. Andres and L. Górniewicz, Topolological Fixed Point Principles for Boundary Value Problems, Kluwer 2003. | Zbl 1029.55002

[001] [2] J. Aubin and A. Cellina, Differential Inclusions, Springer Verlag 1984. | Zbl 0538.34007

[002] [3] J. Banaś and M. Lecho, Fixed points of the product of operators in Banach algebras, PanAmerican Math. Journal 12 (2002), 101-109.

[003] [4] H. Covitz and S.B. Nadler jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11. | Zbl 0192.59802

[004] [5] K. Deimling, Multivalued Differential Equations, W. de Gruyter 1992.

[005] [6] B.C. Dhage, On a fixed point theorem in Banach algebras with aplications, Appl. Math. Lett., accepted. | Zbl 1092.47045

[006] [7] B.C. Dhage, Some nonlinear alternatives in Banach algebras with applications I, Nonlinear Studies 11 (2004), to appear. | Zbl 1092.47046

[007] [8] B.C. Dhage, Multi-valued operators and fixed point theorems in Banach algebras II, Comp. Math. Appl. (2004), to appear.

[008] [9] B.C. Dhage, A functional integro-differential equation in Banach algebras, Functional Diff. Equations 11 (3-4) (2004), 321-332. | Zbl 1087.34041

[009] [10] B.C. Dhage and D. O'Regan, A fixed point theorem in Banach algebras with applications to functional integral equations, Functional Diff. Equations 7 (3-4) (2000), 259-267. | Zbl 1040.45003

[010] [11] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer 1999. | Zbl 0937.55001

[011] [12] A. Granas and J. Dugundji, Fixed Point Theory, Springer Verlag 2003. | Zbl 1025.47002

[012] [13] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer Academic Publishers Dordrechet/Boston/London 1997. | Zbl 0887.47001

[013] [14] M. Kisielewicz, Differential inclusions and optimal control, Kluwer Acad. Publ., Dordrecht 1991.

[014] [15] M.A. Krasnoselskii, Topological Methods in The Theory of Nonlinear Integral Equations, Pergamon Press 1964.

[015] [16] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Xci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786. | Zbl 0151.10703

[016] [17] T.C. Lim, On fixed point stability for set-valued contraction mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985), 436-441. | Zbl 0593.47056

[017] [18] A. Petrusel, Multivalued operators and fixed points, P.U.M.A. 9 (1998), 165-170. | Zbl 0937.47052

[018] [19] W.V. Petryshyn and P.M. Fitzpatrtick, A degree theory, fixed point theorems, and mappings theorems for multi-valued noncompact mappings, Trans. Amer. Math. Xoc. 194 (1974), 1-25.

[019] [20] D. O'Regan, New fixed point results for 1-set contractive set-valued maps, Computes Math. Appl. 35 (4) (1998), 27-34.

[020] [21] L. Rybiński, An application of the continuous selection theorem to the study of the fixed points of multivalued mappings, J. Math. Anal. Appl. 153 (1990), 391-396. | Zbl 0724.47030

[021] [22] E. Zeidler, Nonlinear Functional Analysis and Its Applications: Part I, Springer Verlag 1985. | Zbl 0583.47051