Minimax theorems without changeless proportion
Liang-Ju Chu ; Chi-Nan Tsai
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 23 (2003), p. 55-92 / Harvested from The Polish Digital Mathematics Library

The so-called minimax theorem means that if X and Y are two sets, and f and g are two real-valued functions defined on X×Y, then under some conditions the following inequality holds: infyYsupxXf(x,y)supxXinfyYg(x,y). We will extend the two functions version of minimax theorems without the usual condition: f ≤ g. We replace it by a milder condition: supxXf(x,y)supxXg(x,y), ∀y ∈ Y. However, we require some restrictions; such as, the functions f and g are jointly upward, and their upper sets are connected. On the other hand, by using some properties of multifunctions, we define X-quasiconcave sets, so that we can extend the two functions minimax theorem to the graph of the multifunction. In fact, we get the inequality: infyT(X)supxT-1(y)f(x,y)supxXinfyT(x)g(x,y), where T is a multifunction from X to Y.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:271509
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1047,
     author = {Liang-Ju Chu and Chi-Nan Tsai},
     title = {Minimax theorems without changeless proportion},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {23},
     year = {2003},
     pages = {55-92},
     zbl = {1052.49007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1047}
}
Liang-Ju Chu; Chi-Nan Tsai. Minimax theorems without changeless proportion. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 23 (2003) pp. 55-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1047/

[000] [1] F.E. Browder, Coincidence theorems, minimax theorems, and variational inequalities, Contemp. Math. 26 (1984), 67-80. | Zbl 0542.47046

[001] [2] L.J. Chu, Unified approaches to nonlinear optimization, Optimization 46 (1999), 25-60. | Zbl 0953.47044

[002] [3] K. Fan, Minimax theorems, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 42-47.

[003] [4] M.A. Geraghty and B.L. Lin, On a minimax theorem of Terkelsen, Bull. Inst. Math. Acad. Sinica. 11 (1983), 343-347. | Zbl 0521.49010

[004] [5] M.A. Geraghty and B.L. Lin, Topological minimax theorems, Proc. AMS 91 (1984), 377-380. | Zbl 0512.90095

[005] [6] B.L. Lin and F.S. Yu, A two functions minimax theorem, Acta Math. Hungar. 83 (1-2) (1999), 115-123.

[006] [7] S. Simons, On Terkelsen minimax theorems, Bull. Inst. Math. Acad. Sinica. 18 (1990), 35-39. | Zbl 0714.49010

[007] [8] F. Terkelsen, Some minimax theorems, Math. Scand. 31 (1972), 405-413. | Zbl 0259.90042

[008] [9] M. Sion, On general minimax theorem, Pacific J. Math. 8 (1958), 171-176.