B. Rzepecki in [5] examined the Darboux problem for the hyperbolic equation on the quarter-plane x ≥ 0, y ≥ 0 via a fixed point theorem of B.N. Sadovskii [6]. The aim of this paper is to study the Picard problem for the hyperbolic equation using a method developed by A. Ambrosetti [1], K. Goebel and W. Rzymowski [2] and B. Rzepecki [5].
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1044, author = {Antoni Sadowski}, title = {On the Picard problem for hyperbolic differential equations in Banach spaces}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {23}, year = {2003}, pages = {31-37}, zbl = {1053.35081}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1044} }
Antoni Sadowski. On the Picard problem for hyperbolic differential equations in Banach spaces. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 23 (2003) pp. 31-37. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1044/
[000] [1] A. Ambrosetti, Un teorema di essistenza per le equazioni differenziali nagli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360.
[001] [2] K. Goebel, W. Rzymowski, An existence theorem for the equations x' = f(t,x) in Banach space, Bull. Acad. Polon. Sci., Sér. Sci. Math. 18 (1970), 367-370. | Zbl 0202.10003
[002] [3] P. Negrini, Sul problema di Darboux negli spazi di Banach, Bolletino U.M.I. (5) 17-A (1980), 156-160.
[003] [4] B. Rzepecki, Measure of Non-Compactness and Krasnoselskii's Fixed Point Theorem, Bull. Acad. Polon. Sci., Sér. Sci. Math. 24 (1976), 861-866. | Zbl 0341.47039
[004] [5] B. Rzepecki, On the existence of solution of the Darboux problem for the hyperbolic partial differential equations in Banach Spaces, Rend. Sem. Mat. Univ. Padova 76 (1986). | Zbl 0656.35087
[005] [6] B.N. Sadovskii, Limit compact and condensing operators, Russian Math. Surveys 27 (1972), 86-144.