Variational inequalities in noncompact nonconvex regions
Ching-Yan Lin ; Liang-Ju Chu
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 23 (2003), p. 5-19 / Harvested from The Polish Digital Mathematics Library

In this paper, a general existence theorem on the generalized variational inequality problem GVI(T,C,ϕ) is derived by using our new versions of Nikaidô's coincidence theorem, for the case where the region C is noncompact and nonconvex, but merely is a nearly convex set. Equipped with a kind of V₀-Karamardian condition, this general existence theorem contains some existing ones as special cases. Based on a Saigal condition, we also modify the main theorem to obtain another existence theorem on GVI(T,C,ϕ), which generalizes a result of Fang and Peterson.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:271511
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1042,
     author = {Ching-Yan Lin and Liang-Ju Chu},
     title = {Variational inequalities in noncompact nonconvex regions},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {23},
     year = {2003},
     pages = {5-19},
     zbl = {1054.47054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1042}
}
Ching-Yan Lin; Liang-Ju Chu. Variational inequalities in noncompact nonconvex regions. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 23 (2003) pp. 5-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1042/

[000] [1] E.G. Begle, Locally connected spaces and generalized manifolds, Amer. Math. J. 64 (1942), 553-574. | Zbl 0061.41101

[001] [2] E.G. Begle, The Vietoris mapping theorem for bicompact space, Ann. Math. 51 (1950), 534-543. | Zbl 0036.38803

[002] [3] E.G. Begle, A fixed point theorem, Ann. Math. 51 (1950), 544-550. | Zbl 0036.38901

[003] [4] F.E. Browder, Coincidence theorems, minimax theorems, and variational inequalities, Contemp. Math. 26 (1984), 67-80. | Zbl 0542.47046

[004] [5] D. Chan and J.S. Pang, The generalized quasi-variational inequality problem, Math. Oper. Res. 7 (1982), 211-222. | Zbl 0502.90080

[005] [6] L.J. Chu and C.Y. Lin, New versions of Nikaidô's coincidence theorem, Discuss. Math. DICO 22 (2002), 79-95. | Zbl 1039.47035

[006] [7] S.C. Fang and E.L. Peterson, Generalized variational inequalities, J. Optim. Th. Appl. 38 (3) (1982), 363-383. | Zbl 0471.49007

[007] [8] H. Halkin, Finite convexity in infinite-dimensional spaces, Proc. of the Colloquium on Convexity, Copenhagen (1965), W. Fenchel (ed.), Copenhagen (1967), 126-131.

[008] [9] G. Isac, Complementarity problems, Lecture Notes in Math. 1528, Springer-Verlag, New York, (1992). | Zbl 0795.90072

[009] [10] S. Karamardian, The complementarity problem, Math. Program. 2 (1972), 107-129. | Zbl 0247.90058

[010] [11] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein beweis des fixpunktsatzes fur n-dimensionale simplexe, Fundamenta Math. 14 (1929) 132-137. | Zbl 55.0972.01

[011] [12] L.J. Lin, Pre-Vector variational inequalities, Bull. Australian Math. Soc. 53 (1995), 63-70. | Zbl 0858.49008

[012] [13] G.J. Minty, On the maximal domain of a monotone function, Michigan Math. J. 8 (1961), 135-137. | Zbl 0102.37503

[013] [14] H. Nikaidô, Coincidence and some systems of inequalities, J. Math. Soc., Japan 11 (1959), 354-373. | Zbl 0096.08004

[014] [15] R.T. Rockafellar, On the virtual convexity of the domain and range of a nonlinear maximal monotone operator, Math. Ann. 185 (1970), 81-90. | Zbl 0181.42202

[015] [16] R. Saigal, Extension of the generalized complemetarity problem, Math. of Oper. Res. 1 (3) (1976), 260-266. | Zbl 0363.90091