Let F be a multifunction with values in Lₚ(Ω, X). In this note, we study which regularity properties of F are preserved when we consider the decomposable hull of F.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1040, author = {Andrzej Nowak and Celina Rom}, title = {Decomposable hulls of multifunctions}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {22}, year = {2002}, pages = {233-241}, zbl = {1032.26025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1040} }
Andrzej Nowak; Celina Rom. Decomposable hulls of multifunctions. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 22 (2002) pp. 233-241. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1040/
[000] [1] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182. | Zbl 0368.60006
[001] [2] C.J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. | Zbl 0296.28003
[002] [3] Cz. Olech, Decomposability as substitute for convexity, in: Multifunctions and Integrands (ed. G. Salinetti), Lecture Notes in Math. 1091, Springer Verlag (1984), 193-205.
[003] [4] A.A. Tolstonogov and D.A. Tolstonogov, Lₚ-continuous extreme selectors of multifunctions with decomposable values: Existence theorems, Set-Valued Anal. 4 (1996), 173-203. | Zbl 0847.54019