@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1038, author = {Grzegorz Bartuzel and Andrzej Fryszkowski}, title = {A class of retracts in $L^{p}$ with some applications to differential inclusion}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {22}, year = {2002}, pages = {213-224}, zbl = {1041.35095}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1038} }
Grzegorz Bartuzel; Andrzej Fryszkowski. A class of retracts in $L^{p}$ with some applications to differential inclusion. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 22 (2002) pp. 213-224. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1038/
[000] [1] G. Bartuzel and A. Fryszkowski, On existence of solutions for inclusions Δu ∈ F(x,∇u), in: R. März, ed., Proc. of the Fourth Conf. on Numerical Treatment of Ordinary Differential Equations, pages 1-7, Sektion Mathematik der Humboldt Universität zu Berlin, Berlin, Sep. 1984. | Zbl 0571.35041
[001] [2] G. Bartuzel and A. Fryszkowski, Stability of the principal eigenvalue of the Schrödinger type problems for differential inclusions, Toplological Methods in Nonlinear Analysis 16 (1) (2000), 181-194. | Zbl 0980.34080
[002] [3] G. Bartuzel and A. Fryszkowski, A topological property of the solution set to the Schrödinger differential inclusions, Demomstratio Mathematicae 25 (3) (1995), 411-433. | Zbl 0886.47026
[003] [4] F.D. Blasi and G. Pianigiani, Solution sets of boundary value problems for nonconvex differential inclusion, Oct. 1992, preprint n 115. | Zbl 0785.34018
[004] [5] A. Bressan, A. Cellina and A. Fryszkowski, A class of absolute retracts in spaces of integrable functions, Proc. AMS 112 (1991), 413-418. | Zbl 0747.34014
[005] [6] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1986) 163-174.
[006] [7] N. Dunford and J.T. Schwartz, Linear Operators, Wiley, New York 1958.
[007] [8] Y. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators, Operator Theory, Advances and Applications, Vol. 89, Birkhäuser, Basel, Boston, Berlin 1996. | Zbl 0855.35001
[008] [9] A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps, Studia Math. 76 (1983), 163-174. | Zbl 0534.28003
[009] [10] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit Besonderer Berücksichtigung der Angewendungsgebiete, Springer, Berlin 1989. | Zbl 0691.35001
[010] [11] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. 13 (1965) 397-403. | Zbl 0152.21403