Optimal control of impulsive stochastic evolution inclusions
N.U. Ahmed
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 22 (2002), p. 155-184 / Harvested from The Polish Digital Mathematics Library

In this paper, we consider a class of infinite dimensional stochastic impulsive evolution inclusions driven by vector measures. We use stochastic vector measures as controls adapted to an increasing family of complete sigma algebras and prove the existence of optimal controls.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:271434
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1036,
     author = {N.U. Ahmed},
     title = {Optimal control of impulsive stochastic evolution inclusions},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {22},
     year = {2002},
     pages = {155-184},
     zbl = {1044.49016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1036}
}
N.U. Ahmed. Optimal control of impulsive stochastic evolution inclusions. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 22 (2002) pp. 155-184. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1036/

[000] [1] N.U. Ahmed, Impulsive perturbation of C₀ semigroups and evolution inclusions, Nonlinear Functional Analysis and Applications, (to appear).

[001] [2] N.U. Ahmed, Impulsive perturbation of C₀ semigroups and stochastic evolution inclusions, Discuss. Math. Differential Inclusions, Control and Optimization 22 (1) (2002), 125-149. | Zbl 1039.34055

[002] [3] N.U. Ahmed, Vector measures for optimal control of impulsive systems in Banach spaces, Nonlinear Functional Analysis and Applications 5 (2) (2000), 95-106. | Zbl 0982.49022

[003] [4] N.U. Ahmed, Some remarks on the dynamics of impulsive systems in Banach spaces, Dynamics of Continuous, Discrete and Impulsive Systems 8 (2001), 261-274. | Zbl 0995.34050

[004] [5] N.U. Ahmed, State dependent vector measures as feedback controls for impulsive systems in Banach spaces, Dynamics of Continuous, Discrete and Impulsive Systems 8 (2001), 251-261. | Zbl 0990.34056

[005] [6] N.U. Ahmed, Existence of solutions of nonlinear stochastic differential inclusions on Banach spaces, Proc. World Congress of Nonlinear Analysis' 92, (ed: V. Lakshmikantham), (1992), 1699-1712.

[006] [7] N.U. Ahmed, Existence of optimal controls for a general class of impulsive systems on Banach spaces, SIAM Journal Contr. and Optim. (to appear).

[007] [8] N.U. Ahmed, Necessary conditions of optimality for impulsive systems on Banach spaces, Nonlinear Analysis 51 (2002), 409-424. | Zbl 1095.49513

[008] [9] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, England 1992. | Zbl 0761.60052

[009] [10] J. Diestel and J.J. Uhl, Jr., Vector Measures, AMS, Mathematical Surveys 15 (1977).

[010] [11] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Kluwer Academic Publishers, Dordrecht, Boston, London 1997. | Zbl 0887.47001

[011] [12] J.H. Liu, Nonlinear impulsive evolution equations, dynamics of continuous, Discrete and Impulsive Systems 6 (1999), 77-85. | Zbl 0932.34067

[012] [13] J. Motyl, On the solution of stochastic differential inclusions, J. Math. Anal. and Appl. 192 (1995), 117-132. | Zbl 0826.60053

[013] [14] A.M. Samoilenk and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore 1995.

[014] [15] A.V. Skorohod, Studies in the Theory of Random Processes, (Eng. Trans), Addison-Wesley Publishing Company, Inc. Reading, Massachusetts, (1965), First published by Kiev University Press 1961.

[015] [16] A.I. Tulcea and C.I. Tulcea, Topics in the Theory of Lifting, Springer-Verlag, Berlin, Heidelberg, New York 1969. | Zbl 0179.46303

[016] [17] T. Yang, Impulsive Control Theory, Springer-Verlag, Berlin 2001. | Zbl 0996.93003

[017] [18] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. 1, Fixed Point Theorems, Springer-Verlag New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest. | Zbl 0794.47033