In 1959, Nikaidô established a remarkable coincidence theorem in a compact Hausdorff topological space, to generalize and to give a unified treatment to the results of Gale regarding the existence of economic equilibrium and the theorems in game problems. The main purpose of the present paper is to deduce several generalized key results based on this very powerful result, together with some KKM property. Indeed, we shall simplify and reformulate a few coincidence theorems on acyclic multifunctions, as well as some Górniewicz-type fixed point theorems. Beyond the realm of monotonicity nor metrizability, the results derived here generalize and unify various earlier ones from the classic optimization theory. In the sequel, we shall deduce two versions of Nikaidô's coincidence theorem about Vietoris maps from different approaches.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1033, author = {Liang-Ju Chu and Ching-Yan Lin}, title = {New versions on Nikaid\^o's coincidence theorem}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {22}, year = {2002}, pages = {79-95}, zbl = {1039.47035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1033} }
Liang-Ju Chu; Ching-Yan Lin. New versions on Nikaidô's coincidence theorem. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 22 (2002) pp. 79-95. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1033/
[000] [1] J. Andres, L. Górniewicz and J. Jezierski, Noncompact version of the multivalued Nielsen theory, Lecture Notes in Nonlinear Analysis, Nicholas Copernicus University 2 (1998), 33-50. | Zbl 1095.47502
[001] [2] E.G. Begle, Locally connected spaces and generalized manifolds, Amer. Math. J. 64 (1942), 553-574. | Zbl 0061.41101
[002] [3] E.G. Begle, The Vietoris mapping theorem for bicompact space, Ann. of Math. 51 (1950), 534-543. | Zbl 0036.38803
[003] [4] E.G. Begle, A fixed point theorem, Ann. of Math. 51 (1950), 544-550. | Zbl 0036.38901
[004] [5] F.E. Browder, Coincidence theorems, minimax theorems, and variational inequalities, Contemp. Math. 26 (1984), 67-80. | Zbl 0542.47046
[005] [6] T.H. Chang and C.L. Yen, KKM properties and fixed point theorem, J. Math. Anal. Appl. 203 (1996), 224-235. | Zbl 0883.47067
[006] [7] L.J. Chu, On Fan's minimax inequality, J. Math. Anal. Appl. 201 (1996), 103-113. | Zbl 0849.49008
[007] [8] K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci., U.S.A. 38 (1952), 121-126. | Zbl 0047.35103
[008] [9] K. Fan, A generalization of Tychnoff's fixed point theorem, Math. Ann. 142 (1961), 305-310. | Zbl 0093.36701
[009] [10] G. Fournier and L. Górniewicz, The Lefschetz fixed point theorem for multivalued maps of non-metrizable spaces, Fundamenta Math. XCII (1976), 213-222. | Zbl 0342.55006
[010] [11] G. Fournier and L. Górniewicz, The Lefschetz fixed point theorem for some non-compact multivalued maps, Fundamenta Math. 94 (1976), 245-254. | Zbl 0342.55007
[011] [12] I.L. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170-174. | Zbl 0046.12103
[012] [13] L. Górniewicz, Homological methods in fixed-point theory of multivalued maps, Dins Math. 129 (1976), Warszawa.
[013] [14] L. Górniewicz, A Lefschetz-type fixed point theorem, Fundamenta Math. 88 (1975), 103-115. | Zbl 0306.55007
[014] [15] A. Granas and F.-C. Liu, Coincidences for set-valued maps and minimax inequalities, J. Math. Pures et Appl. 65 (1986), 119-148. | Zbl 0659.49007
[015] [16] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein beweis des fixpunktsatzes fur n-dimensionale simplexe, Fundamenta Math. 14 (1929), 132-137. | Zbl 55.0972.01
[016] [17] L.J. Lin and Z.T. Yu, Fixed points theorems of KKM-type maps, Nonlinear Anal. 38 (1999), 265-275. | Zbl 0947.47047
[017] [18] W.S. Massey, Singular Homology Theory, Springer-Verlag, New York 1980. | Zbl 0442.55001
[018] [19] H. Nikaidô, Coincidence and some systems of inequalities, J. Math. Soc. Japan 11 (1959), 354-373. | Zbl 0096.08004
[019] [20] S. Park, Coincidences of composites of admissible u.s.c. maps and applications, C.R. Math. Acad. Sci. Canada 15 (1993), 125-130. | Zbl 0810.47054
[020] [21] S. Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31 (1994), 493-519. | Zbl 0829.49002
[021] [22] X. Wu and S. Shen, A futher generalization of Yannelis-Prabhakar's continuous selection theorem and its applications, J. Math. Anal. Appl. 197 (1996), 61-74. | Zbl 0852.54019