We prove the existence of viable solutions to the Cauchy problem x” ∈ F(x,x’), x(0) = x₀, x’(0) = y₀, where F is a set-valued map defined on a locally compact set , contained in the Fréchet subdifferential of a ϕ-convex function of order two.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1032, author = {Aurelian Cernea}, title = {On the existence of viable solutions for a class of second order differential inclusions}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {22}, year = {2002}, pages = {67-78}, zbl = {1039.34009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1032} }
Aurelian Cernea. On the existence of viable solutions for a class of second order differential inclusions. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 22 (2002) pp. 67-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1032/
[000] [1] J.P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin 1984.
[001] [2] A. Auslender and J. Mechler, Second order viability problems for differential inclusions, J. Math. Anal. Appl. 181 (1984), 205-218. | Zbl 0808.34012
[002] [3] H. Brezis, Analyse fonctionelle, théorie et applications, Masson, Paris 1983.
[003] [4] T. Cardinali, G. Colombo, F. Papalini and M. Tosques, On a class of evolution equations without convexity, Nonlinear Anal. 28 (1996), 217-234. | Zbl 0880.47045
[004] [5] A. Cernea, Existence of viable solutions for a class of nonconvex differential inclusions, J. Convex Anal., submitted. | Zbl 1077.34018
[005] [6] B. Cornet and B. Haddad, Théoreme de viabilité pour inclusions differentielles du second order, Israel J. Math. 57 (1987), 225-238. | Zbl 0659.34012
[006] [7] M. Degiovanni, A. Marino and M. Tosques, Evolution equations with lack of convexity, Nonlinear Anal. 9 (1995), 1401-1443. | Zbl 0545.46029
[007] [8] T.X.D. Ha and M. Marques, Nonconvex second order differential inclusions with memory, Set-valued Anal. 5 (1995), 71-86. | Zbl 0824.34020
[008] [9] V. Lupulescu, Existence of solutions to a class of second order differential inclusions, Cadernos de Matematica, Aveiro Univ., CM01/I-11. | Zbl 1096.34062
[009] [10] L. Marco and J.A. Murillo, Viability theorems for higher-order differential inclusions, Set-valued Anal. 6 (1998), 21-37. | Zbl 0926.34008
[010] [11] M. Tosques, Quasi-autonomus parabolic evolution equations associated with a class of non linear operators, Ricerche Mat. 38 (1989), 63-92.