In this paper, we investigate the existence of solutions on unbounded domain to a hyperbolic differential inclusion in Banach spaces. We shall rely on a fixed point theorem due to Ma which is an extension to multivalued between locally convex topological spaces of Schaefer's theorem.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1029, author = {Mouffak Benchohra and Sotiris K. Ntouyas}, title = {An existence theorem for an hyperbolic differential inclusion in Banach spaces}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {22}, year = {2002}, pages = {5-16}, zbl = {1039.35148}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1029} }
Mouffak Benchohra; Sotiris K. Ntouyas. An existence theorem for an hyperbolic differential inclusion in Banach spaces. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 22 (2002) pp. 5-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1029/
[000] [1] L. Byszewski, Existence and uniqueness of solutions of nonlocal problems for hyperbolic equation , J. Appl. Math. Stoch. Anal. 3 (3) (1990), 163-168. | Zbl 0725.35059
[001] [2] L. Byszewski, Theorem about existence and uniqueness of continuous solution of nonlocal problem for nonlinear hyperbolic equation, Appl. Anal. 40 (1991), 173-180. | Zbl 0725.35060
[002] [3] L. Byszewski and V. Lakshmikantham, Monotone iterative technique for nonlocal hyperbolic differential problem, J. Math. Phys. Sci. 26 (4) (1992), 345-359. | Zbl 0811.35083
[003] [4] L. Byszewski and N.S. Papageorgiou, An application of a noncompactness technique to an investigation of the existence of solutions to nonlocal multivalued Darboux problem, J. Appl. Math. Stoch. Anal. 12 (2) (1999), 179-190. | Zbl 0936.35203
[004] [5] C. Corduneanu, Integral Equations and Applications, Cambridge Univ. Press, New York 1990.
[005] [6] M. Dawidowski and I. Kubiaczyk, An existence theorem for the generalized hyperbolic equation in Banach space, Ann. Soc. Math. Pol. Ser. I, Comment. Math. 30 (1) (1990), 41-49. | Zbl 0759.35029
[006] [7] M. Dawidowski and I. Kubiaczyk, Existence theorem for hyperbolic differential inclusion with Carathéodory right hand side, Discuss. Math. Differ. Incl. 10 (1990), 69-75.
[007] [8] M. Dawidowski and I. Kubiaczyk, On bounded solutions of hyperbolic differential inclusion in Banach spaces, Demonstr. Math. 25 (1-2) (1992), 153-159.
[008] [9] F. De Blasi and J. Myjak, On the structure of the set of solutions of the Darboux problem for hyperbolic equations, Proc. Edinburgh Math. Soc. 29 (1986), 7-14. | Zbl 0594.35069
[009] [10] F. De Blasi and J. Myjak, On the set of solutions of a differential inclusion, Bull. Inst. Math., Acad. Sin. 14 (1986), 271-275. | Zbl 0607.34010
[010] [11] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin-New York 1992. | Zbl 0760.34002
[011] [12] J. Dugundji and A. Granas, Fixed Point Theory, Monografie Mat. PWN, Warsaw 1982.
[012] [13] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications, 495, Kluwer Academic Publishers, Dordrecht 1999. | Zbl 0937.55001
[013] [14] S. Heikkila and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker, New York 1994. | Zbl 0804.34001
[014] [15] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer, Dordrecht, Boston, London, 1997, Volume II: Applications, Kluwer, Dordrecht, Boston, London 2000. | Zbl 0887.47001
[015] [16] I. Kubiaczyk, Kneser's theorem for hyperbolic equations, Funct. Approx. Comment. Math. 14 (1984), 183-196. | Zbl 0555.35092
[016] [17] I. Kubiaczyk and A.N. Mostafa, On the existence of weak solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces, Fasc. Math. 28 (1998), 93-99. | Zbl 0913.35077
[017] [18] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786. | Zbl 0151.10703
[018] [19] T.W. Ma, Topological degrees for set-valued compact vector fields in locally convex spaces, Dissertationess Math. 92 (1972), 1-43.
[019] [20] N.S. Papageorgiou, Existence of solutions for hyperbolic differential inclusions in Banach spaces, Arch. Math. (Brno) 28 (1992), 205-213. | Zbl 0781.34045
[020] [21] H. Schaefer, Über die methode der a priori schranken, Math. Ann. 129 (1955), 415-416. | Zbl 0064.35703
[021] [22] K. Yosida, Functional Analysis, 6th edn. Springer-Verlag, Berlin 1980.